mirror of
https://github.com/mjl-/mox.git
synced 2025-07-12 19:04:35 +03:00
implement IMAP extension COMPRESS=DEFLATE, rfc 4978
to compress the entire IMAP connection. tested with thunderbird, meli, k9, ios mail. the initial implementation had interoperability issues with some of these clients: if they write the deflate stream and flush in "partial mode", the go stdlib flate reader does not return any data (until there is an explicit zero-length "sync flush" block, or until the history/sliding window is full), blocking progress, resulting in clients closing the seemingly stuck connection after considering the connection timed out. this includes a coy of the flate package with a new reader that returns partially flushed blocks earlier. this also adds imap trace logging to imapclient.Conn, which was useful for debugging.
This commit is contained in:
743
vendor/github.com/mjl-/flate/deflate.go
generated
vendored
Normal file
743
vendor/github.com/mjl-/flate/deflate.go
generated
vendored
Normal file
@ -0,0 +1,743 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package flate
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"math"
|
||||
)
|
||||
|
||||
const (
|
||||
NoCompression = 0
|
||||
BestSpeed = 1
|
||||
BestCompression = 9
|
||||
DefaultCompression = -1
|
||||
|
||||
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
|
||||
// entropy encoding. This mode is useful in compressing data that has
|
||||
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
|
||||
// that lacks an entropy encoder. Compression gains are achieved when
|
||||
// certain bytes in the input stream occur more frequently than others.
|
||||
//
|
||||
// Note that HuffmanOnly produces a compressed output that is
|
||||
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
|
||||
// continue to be able to decompress this output.
|
||||
HuffmanOnly = -2
|
||||
)
|
||||
|
||||
const (
|
||||
logWindowSize = 15
|
||||
windowSize = 1 << logWindowSize
|
||||
windowMask = windowSize - 1
|
||||
|
||||
// The LZ77 step produces a sequence of literal tokens and <length, offset>
|
||||
// pair tokens. The offset is also known as distance. The underlying wire
|
||||
// format limits the range of lengths and offsets. For example, there are
|
||||
// 256 legitimate lengths: those in the range [3, 258]. This package's
|
||||
// compressor uses a higher minimum match length, enabling optimizations
|
||||
// such as finding matches via 32-bit loads and compares.
|
||||
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
|
||||
minMatchLength = 4 // The smallest match length that the compressor actually emits
|
||||
maxMatchLength = 258 // The largest match length
|
||||
baseMatchOffset = 1 // The smallest match offset
|
||||
maxMatchOffset = 1 << 15 // The largest match offset
|
||||
|
||||
// The maximum number of tokens we put into a single flate block, just to
|
||||
// stop things from getting too large.
|
||||
maxFlateBlockTokens = 1 << 14
|
||||
maxStoreBlockSize = 65535
|
||||
hashBits = 17 // After 17 performance degrades
|
||||
hashSize = 1 << hashBits
|
||||
hashMask = (1 << hashBits) - 1
|
||||
maxHashOffset = 1 << 24
|
||||
|
||||
skipNever = math.MaxInt32
|
||||
)
|
||||
|
||||
type compressionLevel struct {
|
||||
level, good, lazy, nice, chain, fastSkipHashing int
|
||||
}
|
||||
|
||||
var levels = []compressionLevel{
|
||||
{0, 0, 0, 0, 0, 0}, // NoCompression.
|
||||
{1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go.
|
||||
// For levels 2-3 we don't bother trying with lazy matches.
|
||||
{2, 4, 0, 16, 8, 5},
|
||||
{3, 4, 0, 32, 32, 6},
|
||||
// Levels 4-9 use increasingly more lazy matching
|
||||
// and increasingly stringent conditions for "good enough".
|
||||
{4, 4, 4, 16, 16, skipNever},
|
||||
{5, 8, 16, 32, 32, skipNever},
|
||||
{6, 8, 16, 128, 128, skipNever},
|
||||
{7, 8, 32, 128, 256, skipNever},
|
||||
{8, 32, 128, 258, 1024, skipNever},
|
||||
{9, 32, 258, 258, 4096, skipNever},
|
||||
}
|
||||
|
||||
type compressor struct {
|
||||
compressionLevel
|
||||
|
||||
w *huffmanBitWriter
|
||||
bulkHasher func([]byte, []uint32)
|
||||
|
||||
// compression algorithm
|
||||
fill func(*compressor, []byte) int // copy data to window
|
||||
step func(*compressor) // process window
|
||||
bestSpeed *deflateFast // Encoder for BestSpeed
|
||||
|
||||
// Input hash chains
|
||||
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
|
||||
// If hashHead[hashValue] is within the current window, then
|
||||
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
|
||||
// with the same hash value.
|
||||
chainHead int
|
||||
hashHead [hashSize]uint32
|
||||
hashPrev [windowSize]uint32
|
||||
hashOffset int
|
||||
|
||||
// input window: unprocessed data is window[index:windowEnd]
|
||||
index int
|
||||
window []byte
|
||||
windowEnd int
|
||||
blockStart int // window index where current tokens start
|
||||
byteAvailable bool // if true, still need to process window[index-1].
|
||||
|
||||
sync bool // requesting flush
|
||||
|
||||
// queued output tokens
|
||||
tokens []token
|
||||
|
||||
// deflate state
|
||||
length int
|
||||
offset int
|
||||
maxInsertIndex int
|
||||
err error
|
||||
|
||||
// hashMatch must be able to contain hashes for the maximum match length.
|
||||
hashMatch [maxMatchLength - 1]uint32
|
||||
}
|
||||
|
||||
func (d *compressor) fillDeflate(b []byte) int {
|
||||
if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
|
||||
// shift the window by windowSize
|
||||
copy(d.window, d.window[windowSize:2*windowSize])
|
||||
d.index -= windowSize
|
||||
d.windowEnd -= windowSize
|
||||
if d.blockStart >= windowSize {
|
||||
d.blockStart -= windowSize
|
||||
} else {
|
||||
d.blockStart = math.MaxInt32
|
||||
}
|
||||
d.hashOffset += windowSize
|
||||
if d.hashOffset > maxHashOffset {
|
||||
delta := d.hashOffset - 1
|
||||
d.hashOffset -= delta
|
||||
d.chainHead -= delta
|
||||
|
||||
// Iterate over slices instead of arrays to avoid copying
|
||||
// the entire table onto the stack (Issue #18625).
|
||||
for i, v := range d.hashPrev[:] {
|
||||
if int(v) > delta {
|
||||
d.hashPrev[i] = uint32(int(v) - delta)
|
||||
} else {
|
||||
d.hashPrev[i] = 0
|
||||
}
|
||||
}
|
||||
for i, v := range d.hashHead[:] {
|
||||
if int(v) > delta {
|
||||
d.hashHead[i] = uint32(int(v) - delta)
|
||||
} else {
|
||||
d.hashHead[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
n := copy(d.window[d.windowEnd:], b)
|
||||
d.windowEnd += n
|
||||
return n
|
||||
}
|
||||
|
||||
func (d *compressor) writeBlock(tokens []token, index int) error {
|
||||
if index > 0 {
|
||||
var window []byte
|
||||
if d.blockStart <= index {
|
||||
window = d.window[d.blockStart:index]
|
||||
}
|
||||
d.blockStart = index
|
||||
d.w.writeBlock(tokens, false, window)
|
||||
return d.w.err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// fillWindow will fill the current window with the supplied
|
||||
// dictionary and calculate all hashes.
|
||||
// This is much faster than doing a full encode.
|
||||
// Should only be used after a reset.
|
||||
func (d *compressor) fillWindow(b []byte) {
|
||||
// Do not fill window if we are in store-only mode.
|
||||
if d.compressionLevel.level < 2 {
|
||||
return
|
||||
}
|
||||
if d.index != 0 || d.windowEnd != 0 {
|
||||
panic("internal error: fillWindow called with stale data")
|
||||
}
|
||||
|
||||
// If we are given too much, cut it.
|
||||
if len(b) > windowSize {
|
||||
b = b[len(b)-windowSize:]
|
||||
}
|
||||
// Add all to window.
|
||||
n := copy(d.window, b)
|
||||
|
||||
// Calculate 256 hashes at the time (more L1 cache hits)
|
||||
loops := (n + 256 - minMatchLength) / 256
|
||||
for j := 0; j < loops; j++ {
|
||||
index := j * 256
|
||||
end := index + 256 + minMatchLength - 1
|
||||
if end > n {
|
||||
end = n
|
||||
}
|
||||
toCheck := d.window[index:end]
|
||||
dstSize := len(toCheck) - minMatchLength + 1
|
||||
|
||||
if dstSize <= 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
dst := d.hashMatch[:dstSize]
|
||||
d.bulkHasher(toCheck, dst)
|
||||
for i, val := range dst {
|
||||
di := i + index
|
||||
hh := &d.hashHead[val&hashMask]
|
||||
// Get previous value with the same hash.
|
||||
// Our chain should point to the previous value.
|
||||
d.hashPrev[di&windowMask] = *hh
|
||||
// Set the head of the hash chain to us.
|
||||
*hh = uint32(di + d.hashOffset)
|
||||
}
|
||||
}
|
||||
// Update window information.
|
||||
d.windowEnd = n
|
||||
d.index = n
|
||||
}
|
||||
|
||||
// Try to find a match starting at index whose length is greater than prevSize.
|
||||
// We only look at chainCount possibilities before giving up.
|
||||
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
|
||||
minMatchLook := maxMatchLength
|
||||
if lookahead < minMatchLook {
|
||||
minMatchLook = lookahead
|
||||
}
|
||||
|
||||
win := d.window[0 : pos+minMatchLook]
|
||||
|
||||
// We quit when we get a match that's at least nice long
|
||||
nice := len(win) - pos
|
||||
if d.nice < nice {
|
||||
nice = d.nice
|
||||
}
|
||||
|
||||
// If we've got a match that's good enough, only look in 1/4 the chain.
|
||||
tries := d.chain
|
||||
length = prevLength
|
||||
if length >= d.good {
|
||||
tries >>= 2
|
||||
}
|
||||
|
||||
wEnd := win[pos+length]
|
||||
wPos := win[pos:]
|
||||
minIndex := pos - windowSize
|
||||
|
||||
for i := prevHead; tries > 0; tries-- {
|
||||
if wEnd == win[i+length] {
|
||||
n := matchLen(win[i:], wPos, minMatchLook)
|
||||
|
||||
if n > length && (n > minMatchLength || pos-i <= 4096) {
|
||||
length = n
|
||||
offset = pos - i
|
||||
ok = true
|
||||
if n >= nice {
|
||||
// The match is good enough that we don't try to find a better one.
|
||||
break
|
||||
}
|
||||
wEnd = win[pos+n]
|
||||
}
|
||||
}
|
||||
if i == minIndex {
|
||||
// hashPrev[i & windowMask] has already been overwritten, so stop now.
|
||||
break
|
||||
}
|
||||
i = int(d.hashPrev[i&windowMask]) - d.hashOffset
|
||||
if i < minIndex || i < 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (d *compressor) writeStoredBlock(buf []byte) error {
|
||||
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
|
||||
return d.w.err
|
||||
}
|
||||
d.w.writeBytes(buf)
|
||||
return d.w.err
|
||||
}
|
||||
|
||||
const hashmul = 0x1e35a7bd
|
||||
|
||||
// hash4 returns a hash representation of the first 4 bytes
|
||||
// of the supplied slice.
|
||||
// The caller must ensure that len(b) >= 4.
|
||||
func hash4(b []byte) uint32 {
|
||||
return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
|
||||
}
|
||||
|
||||
// bulkHash4 will compute hashes using the same
|
||||
// algorithm as hash4.
|
||||
func bulkHash4(b []byte, dst []uint32) {
|
||||
if len(b) < minMatchLength {
|
||||
return
|
||||
}
|
||||
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
|
||||
dst[0] = (hb * hashmul) >> (32 - hashBits)
|
||||
end := len(b) - minMatchLength + 1
|
||||
for i := 1; i < end; i++ {
|
||||
hb = (hb << 8) | uint32(b[i+3])
|
||||
dst[i] = (hb * hashmul) >> (32 - hashBits)
|
||||
}
|
||||
}
|
||||
|
||||
// matchLen returns the number of matching bytes in a and b
|
||||
// up to length 'max'. Both slices must be at least 'max'
|
||||
// bytes in size.
|
||||
func matchLen(a, b []byte, max int) int {
|
||||
a = a[:max]
|
||||
b = b[:len(a)]
|
||||
for i, av := range a {
|
||||
if b[i] != av {
|
||||
return i
|
||||
}
|
||||
}
|
||||
return max
|
||||
}
|
||||
|
||||
// encSpeed will compress and store the currently added data,
|
||||
// if enough has been accumulated or we at the end of the stream.
|
||||
// Any error that occurred will be in d.err
|
||||
func (d *compressor) encSpeed() {
|
||||
// We only compress if we have maxStoreBlockSize.
|
||||
if d.windowEnd < maxStoreBlockSize {
|
||||
if !d.sync {
|
||||
return
|
||||
}
|
||||
|
||||
// Handle small sizes.
|
||||
if d.windowEnd < 128 {
|
||||
switch {
|
||||
case d.windowEnd == 0:
|
||||
return
|
||||
case d.windowEnd <= 16:
|
||||
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
|
||||
default:
|
||||
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
||||
d.err = d.w.err
|
||||
}
|
||||
d.windowEnd = 0
|
||||
d.bestSpeed.reset()
|
||||
return
|
||||
}
|
||||
|
||||
}
|
||||
// Encode the block.
|
||||
d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd])
|
||||
|
||||
// If we removed less than 1/16th, Huffman compress the block.
|
||||
if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) {
|
||||
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
||||
} else {
|
||||
d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd])
|
||||
}
|
||||
d.err = d.w.err
|
||||
d.windowEnd = 0
|
||||
}
|
||||
|
||||
func (d *compressor) initDeflate() {
|
||||
d.window = make([]byte, 2*windowSize)
|
||||
d.hashOffset = 1
|
||||
d.tokens = make([]token, 0, maxFlateBlockTokens+1)
|
||||
d.length = minMatchLength - 1
|
||||
d.offset = 0
|
||||
d.byteAvailable = false
|
||||
d.index = 0
|
||||
d.chainHead = -1
|
||||
d.bulkHasher = bulkHash4
|
||||
}
|
||||
|
||||
func (d *compressor) deflate() {
|
||||
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
|
||||
return
|
||||
}
|
||||
|
||||
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
|
||||
|
||||
Loop:
|
||||
for {
|
||||
if d.index > d.windowEnd {
|
||||
panic("index > windowEnd")
|
||||
}
|
||||
lookahead := d.windowEnd - d.index
|
||||
if lookahead < minMatchLength+maxMatchLength {
|
||||
if !d.sync {
|
||||
break Loop
|
||||
}
|
||||
if d.index > d.windowEnd {
|
||||
panic("index > windowEnd")
|
||||
}
|
||||
if lookahead == 0 {
|
||||
// Flush current output block if any.
|
||||
if d.byteAvailable {
|
||||
// There is still one pending token that needs to be flushed
|
||||
d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
|
||||
d.byteAvailable = false
|
||||
}
|
||||
if len(d.tokens) > 0 {
|
||||
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
|
||||
return
|
||||
}
|
||||
d.tokens = d.tokens[:0]
|
||||
}
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
if d.index < d.maxInsertIndex {
|
||||
// Update the hash
|
||||
hash := hash4(d.window[d.index : d.index+minMatchLength])
|
||||
hh := &d.hashHead[hash&hashMask]
|
||||
d.chainHead = int(*hh)
|
||||
d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
|
||||
*hh = uint32(d.index + d.hashOffset)
|
||||
}
|
||||
prevLength := d.length
|
||||
prevOffset := d.offset
|
||||
d.length = minMatchLength - 1
|
||||
d.offset = 0
|
||||
minIndex := d.index - windowSize
|
||||
if minIndex < 0 {
|
||||
minIndex = 0
|
||||
}
|
||||
|
||||
if d.chainHead-d.hashOffset >= minIndex &&
|
||||
(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
|
||||
d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
|
||||
if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
|
||||
d.length = newLength
|
||||
d.offset = newOffset
|
||||
}
|
||||
}
|
||||
if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
|
||||
d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
|
||||
// There was a match at the previous step, and the current match is
|
||||
// not better. Output the previous match.
|
||||
if d.fastSkipHashing != skipNever {
|
||||
d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset)))
|
||||
} else {
|
||||
d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset)))
|
||||
}
|
||||
// Insert in the hash table all strings up to the end of the match.
|
||||
// index and index-1 are already inserted. If there is not enough
|
||||
// lookahead, the last two strings are not inserted into the hash
|
||||
// table.
|
||||
if d.length <= d.fastSkipHashing {
|
||||
var newIndex int
|
||||
if d.fastSkipHashing != skipNever {
|
||||
newIndex = d.index + d.length
|
||||
} else {
|
||||
newIndex = d.index + prevLength - 1
|
||||
}
|
||||
index := d.index
|
||||
for index++; index < newIndex; index++ {
|
||||
if index < d.maxInsertIndex {
|
||||
hash := hash4(d.window[index : index+minMatchLength])
|
||||
// Get previous value with the same hash.
|
||||
// Our chain should point to the previous value.
|
||||
hh := &d.hashHead[hash&hashMask]
|
||||
d.hashPrev[index&windowMask] = *hh
|
||||
// Set the head of the hash chain to us.
|
||||
*hh = uint32(index + d.hashOffset)
|
||||
}
|
||||
}
|
||||
d.index = index
|
||||
|
||||
if d.fastSkipHashing == skipNever {
|
||||
d.byteAvailable = false
|
||||
d.length = minMatchLength - 1
|
||||
}
|
||||
} else {
|
||||
// For matches this long, we don't bother inserting each individual
|
||||
// item into the table.
|
||||
d.index += d.length
|
||||
}
|
||||
if len(d.tokens) == maxFlateBlockTokens {
|
||||
// The block includes the current character
|
||||
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
|
||||
return
|
||||
}
|
||||
d.tokens = d.tokens[:0]
|
||||
}
|
||||
} else {
|
||||
if d.fastSkipHashing != skipNever || d.byteAvailable {
|
||||
i := d.index - 1
|
||||
if d.fastSkipHashing != skipNever {
|
||||
i = d.index
|
||||
}
|
||||
d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
|
||||
if len(d.tokens) == maxFlateBlockTokens {
|
||||
if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
|
||||
return
|
||||
}
|
||||
d.tokens = d.tokens[:0]
|
||||
}
|
||||
}
|
||||
d.index++
|
||||
if d.fastSkipHashing == skipNever {
|
||||
d.byteAvailable = true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (d *compressor) fillStore(b []byte) int {
|
||||
n := copy(d.window[d.windowEnd:], b)
|
||||
d.windowEnd += n
|
||||
return n
|
||||
}
|
||||
|
||||
func (d *compressor) store() {
|
||||
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
|
||||
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
|
||||
d.windowEnd = 0
|
||||
}
|
||||
}
|
||||
|
||||
// storeHuff compresses and stores the currently added data
|
||||
// when the d.window is full or we are at the end of the stream.
|
||||
// Any error that occurred will be in d.err
|
||||
func (d *compressor) storeHuff() {
|
||||
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
|
||||
return
|
||||
}
|
||||
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
||||
d.err = d.w.err
|
||||
d.windowEnd = 0
|
||||
}
|
||||
|
||||
func (d *compressor) write(b []byte) (n int, err error) {
|
||||
if d.err != nil {
|
||||
return 0, d.err
|
||||
}
|
||||
n = len(b)
|
||||
for len(b) > 0 {
|
||||
d.step(d)
|
||||
b = b[d.fill(d, b):]
|
||||
if d.err != nil {
|
||||
return 0, d.err
|
||||
}
|
||||
}
|
||||
return n, nil
|
||||
}
|
||||
|
||||
func (d *compressor) syncFlush() error {
|
||||
if d.err != nil {
|
||||
return d.err
|
||||
}
|
||||
d.sync = true
|
||||
d.step(d)
|
||||
if d.err == nil {
|
||||
d.w.writeStoredHeader(0, false)
|
||||
d.w.flush()
|
||||
d.err = d.w.err
|
||||
}
|
||||
d.sync = false
|
||||
return d.err
|
||||
}
|
||||
|
||||
func (d *compressor) init(w io.Writer, level int) (err error) {
|
||||
d.w = newHuffmanBitWriter(w)
|
||||
|
||||
switch {
|
||||
case level == NoCompression:
|
||||
d.window = make([]byte, maxStoreBlockSize)
|
||||
d.fill = (*compressor).fillStore
|
||||
d.step = (*compressor).store
|
||||
case level == HuffmanOnly:
|
||||
d.window = make([]byte, maxStoreBlockSize)
|
||||
d.fill = (*compressor).fillStore
|
||||
d.step = (*compressor).storeHuff
|
||||
case level == BestSpeed:
|
||||
d.compressionLevel = levels[level]
|
||||
d.window = make([]byte, maxStoreBlockSize)
|
||||
d.fill = (*compressor).fillStore
|
||||
d.step = (*compressor).encSpeed
|
||||
d.bestSpeed = newDeflateFast()
|
||||
d.tokens = make([]token, maxStoreBlockSize)
|
||||
case level == DefaultCompression:
|
||||
level = 6
|
||||
fallthrough
|
||||
case 2 <= level && level <= 9:
|
||||
d.compressionLevel = levels[level]
|
||||
d.initDeflate()
|
||||
d.fill = (*compressor).fillDeflate
|
||||
d.step = (*compressor).deflate
|
||||
default:
|
||||
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (d *compressor) reset(w io.Writer) {
|
||||
d.w.reset(w)
|
||||
d.sync = false
|
||||
d.err = nil
|
||||
switch d.compressionLevel.level {
|
||||
case NoCompression:
|
||||
d.windowEnd = 0
|
||||
case BestSpeed:
|
||||
d.windowEnd = 0
|
||||
d.tokens = d.tokens[:0]
|
||||
d.bestSpeed.reset()
|
||||
default:
|
||||
d.chainHead = -1
|
||||
clear(d.hashHead[:])
|
||||
clear(d.hashPrev[:])
|
||||
d.hashOffset = 1
|
||||
d.index, d.windowEnd = 0, 0
|
||||
d.blockStart, d.byteAvailable = 0, false
|
||||
d.tokens = d.tokens[:0]
|
||||
d.length = minMatchLength - 1
|
||||
d.offset = 0
|
||||
d.maxInsertIndex = 0
|
||||
}
|
||||
}
|
||||
|
||||
func (d *compressor) close() error {
|
||||
if d.err == errWriterClosed {
|
||||
return nil
|
||||
}
|
||||
if d.err != nil {
|
||||
return d.err
|
||||
}
|
||||
d.sync = true
|
||||
d.step(d)
|
||||
if d.err != nil {
|
||||
return d.err
|
||||
}
|
||||
if d.w.writeStoredHeader(0, true); d.w.err != nil {
|
||||
return d.w.err
|
||||
}
|
||||
d.w.flush()
|
||||
if d.w.err != nil {
|
||||
return d.w.err
|
||||
}
|
||||
d.err = errWriterClosed
|
||||
return nil
|
||||
}
|
||||
|
||||
// NewWriter returns a new [Writer] compressing data at the given level.
|
||||
// Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]);
|
||||
// higher levels typically run slower but compress more. Level 0
|
||||
// ([NoCompression]) does not attempt any compression; it only adds the
|
||||
// necessary DEFLATE framing.
|
||||
// Level -1 ([DefaultCompression]) uses the default compression level.
|
||||
// Level -2 ([HuffmanOnly]) will use Huffman compression only, giving
|
||||
// a very fast compression for all types of input, but sacrificing considerable
|
||||
// compression efficiency.
|
||||
//
|
||||
// If level is in the range [-2, 9] then the error returned will be nil.
|
||||
// Otherwise the error returned will be non-nil.
|
||||
func NewWriter(w io.Writer, level int) (*Writer, error) {
|
||||
var dw Writer
|
||||
if err := dw.d.init(w, level); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &dw, nil
|
||||
}
|
||||
|
||||
// NewWriterDict is like [NewWriter] but initializes the new
|
||||
// [Writer] with a preset dictionary. The returned [Writer] behaves
|
||||
// as if the dictionary had been written to it without producing
|
||||
// any compressed output. The compressed data written to w
|
||||
// can only be decompressed by a [Reader] initialized with the
|
||||
// same dictionary.
|
||||
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
|
||||
dw := &dictWriter{w}
|
||||
zw, err := NewWriter(dw, level)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
zw.d.fillWindow(dict)
|
||||
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
|
||||
return zw, err
|
||||
}
|
||||
|
||||
type dictWriter struct {
|
||||
w io.Writer
|
||||
}
|
||||
|
||||
func (w *dictWriter) Write(b []byte) (n int, err error) {
|
||||
return w.w.Write(b)
|
||||
}
|
||||
|
||||
var errWriterClosed = errors.New("flate: closed writer")
|
||||
|
||||
// A Writer takes data written to it and writes the compressed
|
||||
// form of that data to an underlying writer (see [NewWriter]).
|
||||
type Writer struct {
|
||||
d compressor
|
||||
dict []byte
|
||||
}
|
||||
|
||||
// Write writes data to w, which will eventually write the
|
||||
// compressed form of data to its underlying writer.
|
||||
func (w *Writer) Write(data []byte) (n int, err error) {
|
||||
return w.d.write(data)
|
||||
}
|
||||
|
||||
// Flush flushes any pending data to the underlying writer.
|
||||
// It is useful mainly in compressed network protocols, to ensure that
|
||||
// a remote reader has enough data to reconstruct a packet.
|
||||
// Flush does not return until the data has been written.
|
||||
// Calling Flush when there is no pending data still causes the [Writer]
|
||||
// to emit a sync marker of at least 4 bytes.
|
||||
// If the underlying writer returns an error, Flush returns that error.
|
||||
//
|
||||
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
|
||||
func (w *Writer) Flush() error {
|
||||
// For more about flushing:
|
||||
// https://www.bolet.org/~pornin/deflate-flush.html
|
||||
return w.d.syncFlush()
|
||||
}
|
||||
|
||||
// Close flushes and closes the writer.
|
||||
func (w *Writer) Close() error {
|
||||
return w.d.close()
|
||||
}
|
||||
|
||||
// Reset discards the writer's state and makes it equivalent to
|
||||
// the result of [NewWriter] or [NewWriterDict] called with dst
|
||||
// and w's level and dictionary.
|
||||
func (w *Writer) Reset(dst io.Writer) {
|
||||
if dw, ok := w.d.w.writer.(*dictWriter); ok {
|
||||
// w was created with NewWriterDict
|
||||
dw.w = dst
|
||||
w.d.reset(dw)
|
||||
w.d.fillWindow(w.dict)
|
||||
} else {
|
||||
// w was created with NewWriter
|
||||
w.d.reset(dst)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user