mirror of
https://github.com/mjl-/mox.git
synced 2025-06-30 15:28:15 +03:00

to compress the entire IMAP connection. tested with thunderbird, meli, k9, ios mail. the initial implementation had interoperability issues with some of these clients: if they write the deflate stream and flush in "partial mode", the go stdlib flate reader does not return any data (until there is an explicit zero-length "sync flush" block, or until the history/sliding window is full), blocking progress, resulting in clients closing the seemingly stuck connection after considering the connection timed out. this includes a coy of the flate package with a new reader that returns partially flushed blocks earlier. this also adds imap trace logging to imapclient.Conn, which was useful for debugging.
744 lines
20 KiB
Go
744 lines
20 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package flate
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
)
|
|
|
|
const (
|
|
NoCompression = 0
|
|
BestSpeed = 1
|
|
BestCompression = 9
|
|
DefaultCompression = -1
|
|
|
|
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
|
|
// entropy encoding. This mode is useful in compressing data that has
|
|
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
|
|
// that lacks an entropy encoder. Compression gains are achieved when
|
|
// certain bytes in the input stream occur more frequently than others.
|
|
//
|
|
// Note that HuffmanOnly produces a compressed output that is
|
|
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
|
|
// continue to be able to decompress this output.
|
|
HuffmanOnly = -2
|
|
)
|
|
|
|
const (
|
|
logWindowSize = 15
|
|
windowSize = 1 << logWindowSize
|
|
windowMask = windowSize - 1
|
|
|
|
// The LZ77 step produces a sequence of literal tokens and <length, offset>
|
|
// pair tokens. The offset is also known as distance. The underlying wire
|
|
// format limits the range of lengths and offsets. For example, there are
|
|
// 256 legitimate lengths: those in the range [3, 258]. This package's
|
|
// compressor uses a higher minimum match length, enabling optimizations
|
|
// such as finding matches via 32-bit loads and compares.
|
|
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
|
|
minMatchLength = 4 // The smallest match length that the compressor actually emits
|
|
maxMatchLength = 258 // The largest match length
|
|
baseMatchOffset = 1 // The smallest match offset
|
|
maxMatchOffset = 1 << 15 // The largest match offset
|
|
|
|
// The maximum number of tokens we put into a single flate block, just to
|
|
// stop things from getting too large.
|
|
maxFlateBlockTokens = 1 << 14
|
|
maxStoreBlockSize = 65535
|
|
hashBits = 17 // After 17 performance degrades
|
|
hashSize = 1 << hashBits
|
|
hashMask = (1 << hashBits) - 1
|
|
maxHashOffset = 1 << 24
|
|
|
|
skipNever = math.MaxInt32
|
|
)
|
|
|
|
type compressionLevel struct {
|
|
level, good, lazy, nice, chain, fastSkipHashing int
|
|
}
|
|
|
|
var levels = []compressionLevel{
|
|
{0, 0, 0, 0, 0, 0}, // NoCompression.
|
|
{1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go.
|
|
// For levels 2-3 we don't bother trying with lazy matches.
|
|
{2, 4, 0, 16, 8, 5},
|
|
{3, 4, 0, 32, 32, 6},
|
|
// Levels 4-9 use increasingly more lazy matching
|
|
// and increasingly stringent conditions for "good enough".
|
|
{4, 4, 4, 16, 16, skipNever},
|
|
{5, 8, 16, 32, 32, skipNever},
|
|
{6, 8, 16, 128, 128, skipNever},
|
|
{7, 8, 32, 128, 256, skipNever},
|
|
{8, 32, 128, 258, 1024, skipNever},
|
|
{9, 32, 258, 258, 4096, skipNever},
|
|
}
|
|
|
|
type compressor struct {
|
|
compressionLevel
|
|
|
|
w *huffmanBitWriter
|
|
bulkHasher func([]byte, []uint32)
|
|
|
|
// compression algorithm
|
|
fill func(*compressor, []byte) int // copy data to window
|
|
step func(*compressor) // process window
|
|
bestSpeed *deflateFast // Encoder for BestSpeed
|
|
|
|
// Input hash chains
|
|
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
|
|
// If hashHead[hashValue] is within the current window, then
|
|
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
|
|
// with the same hash value.
|
|
chainHead int
|
|
hashHead [hashSize]uint32
|
|
hashPrev [windowSize]uint32
|
|
hashOffset int
|
|
|
|
// input window: unprocessed data is window[index:windowEnd]
|
|
index int
|
|
window []byte
|
|
windowEnd int
|
|
blockStart int // window index where current tokens start
|
|
byteAvailable bool // if true, still need to process window[index-1].
|
|
|
|
sync bool // requesting flush
|
|
|
|
// queued output tokens
|
|
tokens []token
|
|
|
|
// deflate state
|
|
length int
|
|
offset int
|
|
maxInsertIndex int
|
|
err error
|
|
|
|
// hashMatch must be able to contain hashes for the maximum match length.
|
|
hashMatch [maxMatchLength - 1]uint32
|
|
}
|
|
|
|
func (d *compressor) fillDeflate(b []byte) int {
|
|
if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
|
|
// shift the window by windowSize
|
|
copy(d.window, d.window[windowSize:2*windowSize])
|
|
d.index -= windowSize
|
|
d.windowEnd -= windowSize
|
|
if d.blockStart >= windowSize {
|
|
d.blockStart -= windowSize
|
|
} else {
|
|
d.blockStart = math.MaxInt32
|
|
}
|
|
d.hashOffset += windowSize
|
|
if d.hashOffset > maxHashOffset {
|
|
delta := d.hashOffset - 1
|
|
d.hashOffset -= delta
|
|
d.chainHead -= delta
|
|
|
|
// Iterate over slices instead of arrays to avoid copying
|
|
// the entire table onto the stack (Issue #18625).
|
|
for i, v := range d.hashPrev[:] {
|
|
if int(v) > delta {
|
|
d.hashPrev[i] = uint32(int(v) - delta)
|
|
} else {
|
|
d.hashPrev[i] = 0
|
|
}
|
|
}
|
|
for i, v := range d.hashHead[:] {
|
|
if int(v) > delta {
|
|
d.hashHead[i] = uint32(int(v) - delta)
|
|
} else {
|
|
d.hashHead[i] = 0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
n := copy(d.window[d.windowEnd:], b)
|
|
d.windowEnd += n
|
|
return n
|
|
}
|
|
|
|
func (d *compressor) writeBlock(tokens []token, index int) error {
|
|
if index > 0 {
|
|
var window []byte
|
|
if d.blockStart <= index {
|
|
window = d.window[d.blockStart:index]
|
|
}
|
|
d.blockStart = index
|
|
d.w.writeBlock(tokens, false, window)
|
|
return d.w.err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// fillWindow will fill the current window with the supplied
|
|
// dictionary and calculate all hashes.
|
|
// This is much faster than doing a full encode.
|
|
// Should only be used after a reset.
|
|
func (d *compressor) fillWindow(b []byte) {
|
|
// Do not fill window if we are in store-only mode.
|
|
if d.compressionLevel.level < 2 {
|
|
return
|
|
}
|
|
if d.index != 0 || d.windowEnd != 0 {
|
|
panic("internal error: fillWindow called with stale data")
|
|
}
|
|
|
|
// If we are given too much, cut it.
|
|
if len(b) > windowSize {
|
|
b = b[len(b)-windowSize:]
|
|
}
|
|
// Add all to window.
|
|
n := copy(d.window, b)
|
|
|
|
// Calculate 256 hashes at the time (more L1 cache hits)
|
|
loops := (n + 256 - minMatchLength) / 256
|
|
for j := 0; j < loops; j++ {
|
|
index := j * 256
|
|
end := index + 256 + minMatchLength - 1
|
|
if end > n {
|
|
end = n
|
|
}
|
|
toCheck := d.window[index:end]
|
|
dstSize := len(toCheck) - minMatchLength + 1
|
|
|
|
if dstSize <= 0 {
|
|
continue
|
|
}
|
|
|
|
dst := d.hashMatch[:dstSize]
|
|
d.bulkHasher(toCheck, dst)
|
|
for i, val := range dst {
|
|
di := i + index
|
|
hh := &d.hashHead[val&hashMask]
|
|
// Get previous value with the same hash.
|
|
// Our chain should point to the previous value.
|
|
d.hashPrev[di&windowMask] = *hh
|
|
// Set the head of the hash chain to us.
|
|
*hh = uint32(di + d.hashOffset)
|
|
}
|
|
}
|
|
// Update window information.
|
|
d.windowEnd = n
|
|
d.index = n
|
|
}
|
|
|
|
// Try to find a match starting at index whose length is greater than prevSize.
|
|
// We only look at chainCount possibilities before giving up.
|
|
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
|
|
minMatchLook := maxMatchLength
|
|
if lookahead < minMatchLook {
|
|
minMatchLook = lookahead
|
|
}
|
|
|
|
win := d.window[0 : pos+minMatchLook]
|
|
|
|
// We quit when we get a match that's at least nice long
|
|
nice := len(win) - pos
|
|
if d.nice < nice {
|
|
nice = d.nice
|
|
}
|
|
|
|
// If we've got a match that's good enough, only look in 1/4 the chain.
|
|
tries := d.chain
|
|
length = prevLength
|
|
if length >= d.good {
|
|
tries >>= 2
|
|
}
|
|
|
|
wEnd := win[pos+length]
|
|
wPos := win[pos:]
|
|
minIndex := pos - windowSize
|
|
|
|
for i := prevHead; tries > 0; tries-- {
|
|
if wEnd == win[i+length] {
|
|
n := matchLen(win[i:], wPos, minMatchLook)
|
|
|
|
if n > length && (n > minMatchLength || pos-i <= 4096) {
|
|
length = n
|
|
offset = pos - i
|
|
ok = true
|
|
if n >= nice {
|
|
// The match is good enough that we don't try to find a better one.
|
|
break
|
|
}
|
|
wEnd = win[pos+n]
|
|
}
|
|
}
|
|
if i == minIndex {
|
|
// hashPrev[i & windowMask] has already been overwritten, so stop now.
|
|
break
|
|
}
|
|
i = int(d.hashPrev[i&windowMask]) - d.hashOffset
|
|
if i < minIndex || i < 0 {
|
|
break
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (d *compressor) writeStoredBlock(buf []byte) error {
|
|
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
|
|
return d.w.err
|
|
}
|
|
d.w.writeBytes(buf)
|
|
return d.w.err
|
|
}
|
|
|
|
const hashmul = 0x1e35a7bd
|
|
|
|
// hash4 returns a hash representation of the first 4 bytes
|
|
// of the supplied slice.
|
|
// The caller must ensure that len(b) >= 4.
|
|
func hash4(b []byte) uint32 {
|
|
return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
|
|
}
|
|
|
|
// bulkHash4 will compute hashes using the same
|
|
// algorithm as hash4.
|
|
func bulkHash4(b []byte, dst []uint32) {
|
|
if len(b) < minMatchLength {
|
|
return
|
|
}
|
|
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
|
|
dst[0] = (hb * hashmul) >> (32 - hashBits)
|
|
end := len(b) - minMatchLength + 1
|
|
for i := 1; i < end; i++ {
|
|
hb = (hb << 8) | uint32(b[i+3])
|
|
dst[i] = (hb * hashmul) >> (32 - hashBits)
|
|
}
|
|
}
|
|
|
|
// matchLen returns the number of matching bytes in a and b
|
|
// up to length 'max'. Both slices must be at least 'max'
|
|
// bytes in size.
|
|
func matchLen(a, b []byte, max int) int {
|
|
a = a[:max]
|
|
b = b[:len(a)]
|
|
for i, av := range a {
|
|
if b[i] != av {
|
|
return i
|
|
}
|
|
}
|
|
return max
|
|
}
|
|
|
|
// encSpeed will compress and store the currently added data,
|
|
// if enough has been accumulated or we at the end of the stream.
|
|
// Any error that occurred will be in d.err
|
|
func (d *compressor) encSpeed() {
|
|
// We only compress if we have maxStoreBlockSize.
|
|
if d.windowEnd < maxStoreBlockSize {
|
|
if !d.sync {
|
|
return
|
|
}
|
|
|
|
// Handle small sizes.
|
|
if d.windowEnd < 128 {
|
|
switch {
|
|
case d.windowEnd == 0:
|
|
return
|
|
case d.windowEnd <= 16:
|
|
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
|
|
default:
|
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
|
d.err = d.w.err
|
|
}
|
|
d.windowEnd = 0
|
|
d.bestSpeed.reset()
|
|
return
|
|
}
|
|
|
|
}
|
|
// Encode the block.
|
|
d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd])
|
|
|
|
// If we removed less than 1/16th, Huffman compress the block.
|
|
if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) {
|
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
|
} else {
|
|
d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd])
|
|
}
|
|
d.err = d.w.err
|
|
d.windowEnd = 0
|
|
}
|
|
|
|
func (d *compressor) initDeflate() {
|
|
d.window = make([]byte, 2*windowSize)
|
|
d.hashOffset = 1
|
|
d.tokens = make([]token, 0, maxFlateBlockTokens+1)
|
|
d.length = minMatchLength - 1
|
|
d.offset = 0
|
|
d.byteAvailable = false
|
|
d.index = 0
|
|
d.chainHead = -1
|
|
d.bulkHasher = bulkHash4
|
|
}
|
|
|
|
func (d *compressor) deflate() {
|
|
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
|
|
return
|
|
}
|
|
|
|
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
|
|
|
|
Loop:
|
|
for {
|
|
if d.index > d.windowEnd {
|
|
panic("index > windowEnd")
|
|
}
|
|
lookahead := d.windowEnd - d.index
|
|
if lookahead < minMatchLength+maxMatchLength {
|
|
if !d.sync {
|
|
break Loop
|
|
}
|
|
if d.index > d.windowEnd {
|
|
panic("index > windowEnd")
|
|
}
|
|
if lookahead == 0 {
|
|
// Flush current output block if any.
|
|
if d.byteAvailable {
|
|
// There is still one pending token that needs to be flushed
|
|
d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
|
|
d.byteAvailable = false
|
|
}
|
|
if len(d.tokens) > 0 {
|
|
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
|
|
return
|
|
}
|
|
d.tokens = d.tokens[:0]
|
|
}
|
|
break Loop
|
|
}
|
|
}
|
|
if d.index < d.maxInsertIndex {
|
|
// Update the hash
|
|
hash := hash4(d.window[d.index : d.index+minMatchLength])
|
|
hh := &d.hashHead[hash&hashMask]
|
|
d.chainHead = int(*hh)
|
|
d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
|
|
*hh = uint32(d.index + d.hashOffset)
|
|
}
|
|
prevLength := d.length
|
|
prevOffset := d.offset
|
|
d.length = minMatchLength - 1
|
|
d.offset = 0
|
|
minIndex := d.index - windowSize
|
|
if minIndex < 0 {
|
|
minIndex = 0
|
|
}
|
|
|
|
if d.chainHead-d.hashOffset >= minIndex &&
|
|
(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
|
|
d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
|
|
if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
|
|
d.length = newLength
|
|
d.offset = newOffset
|
|
}
|
|
}
|
|
if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
|
|
d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
|
|
// There was a match at the previous step, and the current match is
|
|
// not better. Output the previous match.
|
|
if d.fastSkipHashing != skipNever {
|
|
d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset)))
|
|
} else {
|
|
d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset)))
|
|
}
|
|
// Insert in the hash table all strings up to the end of the match.
|
|
// index and index-1 are already inserted. If there is not enough
|
|
// lookahead, the last two strings are not inserted into the hash
|
|
// table.
|
|
if d.length <= d.fastSkipHashing {
|
|
var newIndex int
|
|
if d.fastSkipHashing != skipNever {
|
|
newIndex = d.index + d.length
|
|
} else {
|
|
newIndex = d.index + prevLength - 1
|
|
}
|
|
index := d.index
|
|
for index++; index < newIndex; index++ {
|
|
if index < d.maxInsertIndex {
|
|
hash := hash4(d.window[index : index+minMatchLength])
|
|
// Get previous value with the same hash.
|
|
// Our chain should point to the previous value.
|
|
hh := &d.hashHead[hash&hashMask]
|
|
d.hashPrev[index&windowMask] = *hh
|
|
// Set the head of the hash chain to us.
|
|
*hh = uint32(index + d.hashOffset)
|
|
}
|
|
}
|
|
d.index = index
|
|
|
|
if d.fastSkipHashing == skipNever {
|
|
d.byteAvailable = false
|
|
d.length = minMatchLength - 1
|
|
}
|
|
} else {
|
|
// For matches this long, we don't bother inserting each individual
|
|
// item into the table.
|
|
d.index += d.length
|
|
}
|
|
if len(d.tokens) == maxFlateBlockTokens {
|
|
// The block includes the current character
|
|
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
|
|
return
|
|
}
|
|
d.tokens = d.tokens[:0]
|
|
}
|
|
} else {
|
|
if d.fastSkipHashing != skipNever || d.byteAvailable {
|
|
i := d.index - 1
|
|
if d.fastSkipHashing != skipNever {
|
|
i = d.index
|
|
}
|
|
d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
|
|
if len(d.tokens) == maxFlateBlockTokens {
|
|
if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
|
|
return
|
|
}
|
|
d.tokens = d.tokens[:0]
|
|
}
|
|
}
|
|
d.index++
|
|
if d.fastSkipHashing == skipNever {
|
|
d.byteAvailable = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (d *compressor) fillStore(b []byte) int {
|
|
n := copy(d.window[d.windowEnd:], b)
|
|
d.windowEnd += n
|
|
return n
|
|
}
|
|
|
|
func (d *compressor) store() {
|
|
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
|
|
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
|
|
d.windowEnd = 0
|
|
}
|
|
}
|
|
|
|
// storeHuff compresses and stores the currently added data
|
|
// when the d.window is full or we are at the end of the stream.
|
|
// Any error that occurred will be in d.err
|
|
func (d *compressor) storeHuff() {
|
|
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
|
|
return
|
|
}
|
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
|
|
d.err = d.w.err
|
|
d.windowEnd = 0
|
|
}
|
|
|
|
func (d *compressor) write(b []byte) (n int, err error) {
|
|
if d.err != nil {
|
|
return 0, d.err
|
|
}
|
|
n = len(b)
|
|
for len(b) > 0 {
|
|
d.step(d)
|
|
b = b[d.fill(d, b):]
|
|
if d.err != nil {
|
|
return 0, d.err
|
|
}
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
func (d *compressor) syncFlush() error {
|
|
if d.err != nil {
|
|
return d.err
|
|
}
|
|
d.sync = true
|
|
d.step(d)
|
|
if d.err == nil {
|
|
d.w.writeStoredHeader(0, false)
|
|
d.w.flush()
|
|
d.err = d.w.err
|
|
}
|
|
d.sync = false
|
|
return d.err
|
|
}
|
|
|
|
func (d *compressor) init(w io.Writer, level int) (err error) {
|
|
d.w = newHuffmanBitWriter(w)
|
|
|
|
switch {
|
|
case level == NoCompression:
|
|
d.window = make([]byte, maxStoreBlockSize)
|
|
d.fill = (*compressor).fillStore
|
|
d.step = (*compressor).store
|
|
case level == HuffmanOnly:
|
|
d.window = make([]byte, maxStoreBlockSize)
|
|
d.fill = (*compressor).fillStore
|
|
d.step = (*compressor).storeHuff
|
|
case level == BestSpeed:
|
|
d.compressionLevel = levels[level]
|
|
d.window = make([]byte, maxStoreBlockSize)
|
|
d.fill = (*compressor).fillStore
|
|
d.step = (*compressor).encSpeed
|
|
d.bestSpeed = newDeflateFast()
|
|
d.tokens = make([]token, maxStoreBlockSize)
|
|
case level == DefaultCompression:
|
|
level = 6
|
|
fallthrough
|
|
case 2 <= level && level <= 9:
|
|
d.compressionLevel = levels[level]
|
|
d.initDeflate()
|
|
d.fill = (*compressor).fillDeflate
|
|
d.step = (*compressor).deflate
|
|
default:
|
|
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (d *compressor) reset(w io.Writer) {
|
|
d.w.reset(w)
|
|
d.sync = false
|
|
d.err = nil
|
|
switch d.compressionLevel.level {
|
|
case NoCompression:
|
|
d.windowEnd = 0
|
|
case BestSpeed:
|
|
d.windowEnd = 0
|
|
d.tokens = d.tokens[:0]
|
|
d.bestSpeed.reset()
|
|
default:
|
|
d.chainHead = -1
|
|
clear(d.hashHead[:])
|
|
clear(d.hashPrev[:])
|
|
d.hashOffset = 1
|
|
d.index, d.windowEnd = 0, 0
|
|
d.blockStart, d.byteAvailable = 0, false
|
|
d.tokens = d.tokens[:0]
|
|
d.length = minMatchLength - 1
|
|
d.offset = 0
|
|
d.maxInsertIndex = 0
|
|
}
|
|
}
|
|
|
|
func (d *compressor) close() error {
|
|
if d.err == errWriterClosed {
|
|
return nil
|
|
}
|
|
if d.err != nil {
|
|
return d.err
|
|
}
|
|
d.sync = true
|
|
d.step(d)
|
|
if d.err != nil {
|
|
return d.err
|
|
}
|
|
if d.w.writeStoredHeader(0, true); d.w.err != nil {
|
|
return d.w.err
|
|
}
|
|
d.w.flush()
|
|
if d.w.err != nil {
|
|
return d.w.err
|
|
}
|
|
d.err = errWriterClosed
|
|
return nil
|
|
}
|
|
|
|
// NewWriter returns a new [Writer] compressing data at the given level.
|
|
// Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]);
|
|
// higher levels typically run slower but compress more. Level 0
|
|
// ([NoCompression]) does not attempt any compression; it only adds the
|
|
// necessary DEFLATE framing.
|
|
// Level -1 ([DefaultCompression]) uses the default compression level.
|
|
// Level -2 ([HuffmanOnly]) will use Huffman compression only, giving
|
|
// a very fast compression for all types of input, but sacrificing considerable
|
|
// compression efficiency.
|
|
//
|
|
// If level is in the range [-2, 9] then the error returned will be nil.
|
|
// Otherwise the error returned will be non-nil.
|
|
func NewWriter(w io.Writer, level int) (*Writer, error) {
|
|
var dw Writer
|
|
if err := dw.d.init(w, level); err != nil {
|
|
return nil, err
|
|
}
|
|
return &dw, nil
|
|
}
|
|
|
|
// NewWriterDict is like [NewWriter] but initializes the new
|
|
// [Writer] with a preset dictionary. The returned [Writer] behaves
|
|
// as if the dictionary had been written to it without producing
|
|
// any compressed output. The compressed data written to w
|
|
// can only be decompressed by a [Reader] initialized with the
|
|
// same dictionary.
|
|
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
|
|
dw := &dictWriter{w}
|
|
zw, err := NewWriter(dw, level)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
zw.d.fillWindow(dict)
|
|
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
|
|
return zw, err
|
|
}
|
|
|
|
type dictWriter struct {
|
|
w io.Writer
|
|
}
|
|
|
|
func (w *dictWriter) Write(b []byte) (n int, err error) {
|
|
return w.w.Write(b)
|
|
}
|
|
|
|
var errWriterClosed = errors.New("flate: closed writer")
|
|
|
|
// A Writer takes data written to it and writes the compressed
|
|
// form of that data to an underlying writer (see [NewWriter]).
|
|
type Writer struct {
|
|
d compressor
|
|
dict []byte
|
|
}
|
|
|
|
// Write writes data to w, which will eventually write the
|
|
// compressed form of data to its underlying writer.
|
|
func (w *Writer) Write(data []byte) (n int, err error) {
|
|
return w.d.write(data)
|
|
}
|
|
|
|
// Flush flushes any pending data to the underlying writer.
|
|
// It is useful mainly in compressed network protocols, to ensure that
|
|
// a remote reader has enough data to reconstruct a packet.
|
|
// Flush does not return until the data has been written.
|
|
// Calling Flush when there is no pending data still causes the [Writer]
|
|
// to emit a sync marker of at least 4 bytes.
|
|
// If the underlying writer returns an error, Flush returns that error.
|
|
//
|
|
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
|
|
func (w *Writer) Flush() error {
|
|
// For more about flushing:
|
|
// https://www.bolet.org/~pornin/deflate-flush.html
|
|
return w.d.syncFlush()
|
|
}
|
|
|
|
// Close flushes and closes the writer.
|
|
func (w *Writer) Close() error {
|
|
return w.d.close()
|
|
}
|
|
|
|
// Reset discards the writer's state and makes it equivalent to
|
|
// the result of [NewWriter] or [NewWriterDict] called with dst
|
|
// and w's level and dictionary.
|
|
func (w *Writer) Reset(dst io.Writer) {
|
|
if dw, ok := w.d.w.writer.(*dictWriter); ok {
|
|
// w was created with NewWriterDict
|
|
dw.w = dst
|
|
w.d.reset(dw)
|
|
w.d.fillWindow(w.dict)
|
|
} else {
|
|
// w was created with NewWriter
|
|
w.d.reset(dst)
|
|
}
|
|
}
|