htop/darwin/Platform.c

408 lines
11 KiB
C
Raw Normal View History

/*
htop - darwin/Platform.c
(C) 2014 Hisham H. Muhammad
(C) 2015 David C. Hunt
Released under the GNU GPLv2, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "Platform.h"
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <CoreFoundation/CFString.h>
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/ps/IOPowerSources.h>
#include <IOKit/ps/IOPSKeys.h>
#include "ClockMeter.h"
#include "CPUMeter.h"
#include "CRT.h"
#include "DarwinProcessList.h"
#include "DateMeter.h"
#include "DateTimeMeter.h"
#include "HostnameMeter.h"
#include "LoadAverageMeter.h"
#include "Macros.h"
#include "MemoryMeter.h"
#include "ProcessLocksScreen.h"
#include "SwapMeter.h"
#include "SysArchMeter.h"
#include "TasksMeter.h"
#include "UptimeMeter.h"
2019-07-07 21:30:37 +00:00
#include "zfs/ZfsArcMeter.h"
#include "zfs/ZfsCompressedArcMeter.h"
#ifdef HAVE_MACH_MACH_TIME_H
#include <mach/mach_time.h>
#endif
2015-07-13 06:17:14 +00:00
2020-12-19 17:10:03 +00:00
const ProcessField Platform_defaultFields[] = { PID, USER, PRIORITY, NICE, M_VIRT, M_RESIDENT, STATE, PERCENT_CPU, PERCENT_MEM, TIME, COMM, 0 };
const SignalItem Platform_signals[] = {
{ .name = " 0 Cancel", .number = 0 },
{ .name = " 1 SIGHUP", .number = 1 },
{ .name = " 2 SIGINT", .number = 2 },
{ .name = " 3 SIGQUIT", .number = 3 },
{ .name = " 4 SIGILL", .number = 4 },
{ .name = " 5 SIGTRAP", .number = 5 },
{ .name = " 6 SIGABRT", .number = 6 },
{ .name = " 6 SIGIOT", .number = 6 },
{ .name = " 7 SIGEMT", .number = 7 },
{ .name = " 8 SIGFPE", .number = 8 },
{ .name = " 9 SIGKILL", .number = 9 },
{ .name = "10 SIGBUS", .number = 10 },
{ .name = "11 SIGSEGV", .number = 11 },
{ .name = "12 SIGSYS", .number = 12 },
{ .name = "13 SIGPIPE", .number = 13 },
{ .name = "14 SIGALRM", .number = 14 },
{ .name = "15 SIGTERM", .number = 15 },
{ .name = "16 SIGURG", .number = 16 },
{ .name = "17 SIGSTOP", .number = 17 },
{ .name = "18 SIGTSTP", .number = 18 },
{ .name = "19 SIGCONT", .number = 19 },
{ .name = "20 SIGCHLD", .number = 20 },
{ .name = "21 SIGTTIN", .number = 21 },
{ .name = "22 SIGTTOU", .number = 22 },
{ .name = "23 SIGIO", .number = 23 },
{ .name = "24 SIGXCPU", .number = 24 },
{ .name = "25 SIGXFSZ", .number = 25 },
{ .name = "26 SIGVTALRM", .number = 26 },
{ .name = "27 SIGPROF", .number = 27 },
{ .name = "28 SIGWINCH", .number = 28 },
{ .name = "29 SIGINFO", .number = 29 },
{ .name = "30 SIGUSR1", .number = 30 },
{ .name = "31 SIGUSR2", .number = 31 },
};
2020-10-03 20:00:27 +00:00
const unsigned int Platform_numberOfSignals = ARRAYSIZE(Platform_signals);
2020-10-05 11:19:50 +00:00
const MeterClass* const Platform_meterTypes[] = {
&CPUMeter_class,
&ClockMeter_class,
&DateMeter_class,
&DateTimeMeter_class,
&LoadAverageMeter_class,
&LoadMeter_class,
&MemoryMeter_class,
2015-11-16 17:32:22 +00:00
&SwapMeter_class,
&TasksMeter_class,
&BatteryMeter_class,
&HostnameMeter_class,
&SysArchMeter_class,
&UptimeMeter_class,
&AllCPUsMeter_class,
&AllCPUs2Meter_class,
&AllCPUs4Meter_class,
&AllCPUs8Meter_class,
&LeftCPUsMeter_class,
&RightCPUsMeter_class,
&LeftCPUs2Meter_class,
&RightCPUs2Meter_class,
&LeftCPUs4Meter_class,
&RightCPUs4Meter_class,
&LeftCPUs8Meter_class,
&RightCPUs8Meter_class,
2019-07-07 21:30:37 +00:00
&ZfsArcMeter_class,
&ZfsCompressedArcMeter_class,
&BlankMeter_class,
NULL
};
double Platform_timebaseToNS = 1.0;
long Platform_clockTicksPerSec = -1;
void Platform_init(void) {
// Check if we can determine the timebase used on this system.
// If the API is unavailable assume we get our timebase in nanoseconds.
#ifdef HAVE_MACH_TIMEBASE_INFO
mach_timebase_info_data_t info;
mach_timebase_info(&info);
Platform_timebaseToNS = (double)info.numer / (double)info.denom;
#else
Platform_timebaseToNS = 1.0;
#endif
// Determine the number of clock ticks per second
errno = 0;
Platform_clockTicksPerSec = sysconf(_SC_CLK_TCK);
if (errno || Platform_clockTicksPerSec < 1) {
CRT_fatalError("Unable to retrieve clock tick rate");
}
}
void Platform_done(void) {
/* no platform-specific cleanup needed */
}
void Platform_setBindings(Htop_Action* keys) {
/* no platform-specific key bindings */
(void) keys;
}
int Platform_getUptime() {
2015-08-19 16:56:46 +00:00
struct timeval bootTime, currTime;
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
size_t size = sizeof(bootTime);
2015-07-14 02:02:40 +00:00
2015-08-19 16:56:46 +00:00
int err = sysctl(mib, 2, &bootTime, &size, NULL, 0);
if (err) {
return -1;
}
gettimeofday(&currTime, NULL);
2015-07-14 02:02:40 +00:00
2015-08-19 16:56:46 +00:00
return (int) difftime(currTime.tv_sec, bootTime.tv_sec);
}
void Platform_getLoadAverage(double* one, double* five, double* fifteen) {
2015-07-13 06:17:14 +00:00
double results[3];
2020-10-31 19:52:20 +00:00
if (3 == getloadavg(results, 3)) {
2015-07-13 06:17:14 +00:00
*one = results[0];
*five = results[1];
*fifteen = results[2];
} else {
*one = 0;
*five = 0;
*fifteen = 0;
}
}
int Platform_getMaxPid() {
2015-07-13 06:17:14 +00:00
/* http://opensource.apple.com/source/xnu/xnu-2782.1.97/bsd/sys/proc_internal.hh */
return 99999;
}
static double Platform_setCPUAverageValues(Meter* mtr) {
2020-10-31 22:28:02 +00:00
const ProcessList* dpl = mtr->pl;
unsigned int cpus = dpl->cpuCount;
double sumNice = 0.0;
double sumNormal = 0.0;
double sumKernel = 0.0;
double sumPercent = 0.0;
for (unsigned int i = 1; i <= cpus; i++) {
sumPercent += Platform_setCPUValues(mtr, i);
sumNice += mtr->values[CPU_METER_NICE];
sumNormal += mtr->values[CPU_METER_NORMAL];
sumKernel += mtr->values[CPU_METER_KERNEL];
}
mtr->values[CPU_METER_NICE] = sumNice / cpus;
mtr->values[CPU_METER_NORMAL] = sumNormal / cpus;
mtr->values[CPU_METER_KERNEL] = sumKernel / cpus;
return sumPercent / cpus;
}
double Platform_setCPUValues(Meter* mtr, unsigned int cpu) {
if (cpu == 0) {
return Platform_setCPUAverageValues(mtr);
}
2015-08-19 16:56:46 +00:00
2020-10-31 22:28:02 +00:00
const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl;
const processor_cpu_load_info_t prev = &dpl->prev_load[cpu - 1];
const processor_cpu_load_info_t curr = &dpl->curr_load[cpu - 1];
2015-08-19 16:56:46 +00:00
double total = 0;
/* Take the sums */
2020-10-31 19:55:36 +00:00
for (size_t i = 0; i < CPU_STATE_MAX; ++i) {
2015-08-19 16:56:46 +00:00
total += (double)curr->cpu_ticks[i] - (double)prev->cpu_ticks[i];
}
2015-08-19 16:56:46 +00:00
mtr->values[CPU_METER_NICE]
2020-10-31 21:14:27 +00:00
= ((double)curr->cpu_ticks[CPU_STATE_NICE] - (double)prev->cpu_ticks[CPU_STATE_NICE]) * 100.0 / total;
2015-08-19 16:56:46 +00:00
mtr->values[CPU_METER_NORMAL]
2020-10-31 21:14:27 +00:00
= ((double)curr->cpu_ticks[CPU_STATE_USER] - (double)prev->cpu_ticks[CPU_STATE_USER]) * 100.0 / total;
2015-08-19 16:56:46 +00:00
mtr->values[CPU_METER_KERNEL]
2020-10-31 21:14:27 +00:00
= ((double)curr->cpu_ticks[CPU_STATE_SYSTEM] - (double)prev->cpu_ticks[CPU_STATE_SYSTEM]) * 100.0 / total;
2015-07-14 02:02:40 +00:00
mtr->curItems = 3;
2015-07-14 02:02:40 +00:00
2015-08-19 16:56:46 +00:00
/* Convert to percent and return */
total = mtr->values[CPU_METER_NICE] + mtr->values[CPU_METER_NORMAL] + mtr->values[CPU_METER_KERNEL];
mtr->values[CPU_METER_FREQUENCY] = NAN;
mtr->values[CPU_METER_TEMPERATURE] = NAN;
return CLAMP(total, 0.0, 100.0);
2015-08-19 16:56:46 +00:00
}
void Platform_setMemoryValues(Meter* mtr) {
2020-10-31 22:28:02 +00:00
const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl;
const struct vm_statistics* vm = &dpl->vm_stats;
2015-08-19 16:56:46 +00:00
double page_K = (double)vm_page_size / (double)1024;
mtr->total = dpl->host_info.max_mem / 1024;
mtr->values[0] = (double)(vm->active_count + vm->wire_count) * page_K;
mtr->values[1] = (double)vm->purgeable_count * page_K;
// mtr->values[2] = "shared memory, like tmpfs and shm"
mtr->values[3] = (double)vm->inactive_count * page_K;
// mtr->values[4] = "available memory"
}
2015-11-16 17:32:22 +00:00
void Platform_setSwapValues(Meter* mtr) {
2020-10-31 21:14:27 +00:00
int mib[2] = {CTL_VM, VM_SWAPUSAGE};
struct xsw_usage swapused;
size_t swlen = sizeof(swapused);
sysctl(mib, 2, &swapused, &swlen, NULL, 0);
2020-10-31 21:14:27 +00:00
mtr->total = swapused.xsu_total / 1024;
mtr->values[0] = swapused.xsu_used / 1024;
2015-11-16 17:32:22 +00:00
}
2019-07-07 21:30:37 +00:00
void Platform_setZfsArcValues(Meter* this) {
const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl;
2019-07-07 21:30:37 +00:00
ZfsArcMeter_readStats(this, &(dpl->zfs));
2019-07-07 21:30:37 +00:00
}
void Platform_setZfsCompressedArcValues(Meter* this) {
const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl;
ZfsCompressedArcMeter_readStats(this, &(dpl->zfs));
}
char* Platform_getProcessEnv(pid_t pid) {
char* env = NULL;
int argmax;
size_t bufsz = sizeof(argmax);
int mib[3];
mib[0] = CTL_KERN;
mib[1] = KERN_ARGMAX;
if (sysctl(mib, 2, &argmax, &bufsz, 0, 0) == 0) {
2016-02-02 14:53:02 +00:00
char* buf = xMalloc(argmax);
if (buf) {
mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
mib[2] = pid;
2020-09-08 14:17:31 +00:00
bufsz = argmax;
if (sysctl(mib, 3, buf, &bufsz, 0, 0) == 0) {
if (bufsz > sizeof(int)) {
char *p = buf, *endp = buf + bufsz;
2020-09-08 14:17:31 +00:00
int argc = *(int*)(void*)p;
p += sizeof(int);
// skip exe
2020-10-31 22:28:02 +00:00
p = strchr(p, 0) + 1;
// skip padding
2020-10-31 19:39:01 +00:00
while (!*p && p < endp)
++p;
// skip argv
2020-10-31 22:28:02 +00:00
for (; argc-- && p < endp; p = strrchr(p, 0) + 1)
;
// skip padding
2020-10-31 19:39:01 +00:00
while (!*p && p < endp)
++p;
size_t size = endp - p;
2020-10-31 22:28:02 +00:00
env = xMalloc(size + 2);
memcpy(env, p, size);
env[size] = 0;
2020-10-31 22:28:02 +00:00
env[size + 1] = 0;
}
}
free(buf);
}
}
return env;
}
char* Platform_getInodeFilename(pid_t pid, ino_t inode) {
(void)pid;
(void)inode;
return NULL;
}
FileLocks_ProcessData* Platform_getProcessLocks(pid_t pid) {
(void)pid;
return NULL;
}
bool Platform_getDiskIO(DiskIOData* data) {
// TODO
(void)data;
return false;
}
2020-10-08 14:34:54 +00:00
bool Platform_getNetworkIO(NetworkIOData* data) {
2020-10-08 14:34:54 +00:00
// TODO
(void)data;
return false;
2020-10-08 14:34:54 +00:00
}
void Platform_getBattery(double* percent, ACPresence* isOnAC) {
CFTypeRef power_sources = IOPSCopyPowerSourcesInfo();
*percent = NAN;
*isOnAC = AC_ERROR;
if (NULL == power_sources)
return;
CFArrayRef list = IOPSCopyPowerSourcesList(power_sources);
CFDictionaryRef battery = NULL;
int len;
if (NULL == list) {
CFRelease(power_sources);
return;
}
len = CFArrayGetCount(list);
/* Get the battery */
for (int i = 0; i < len && battery == NULL; ++i) {
CFDictionaryRef candidate = IOPSGetPowerSourceDescription(power_sources,
CFArrayGetValueAtIndex(list, i)); /* GET rule */
CFStringRef type;
if (NULL != candidate) {
type = (CFStringRef) CFDictionaryGetValue(candidate,
CFSTR(kIOPSTransportTypeKey)); /* GET rule */
if (kCFCompareEqualTo == CFStringCompare(type, CFSTR(kIOPSInternalType), 0)) {
CFRetain(candidate);
battery = candidate;
}
}
}
if (NULL != battery) {
/* Determine the AC state */
CFStringRef power_state = CFDictionaryGetValue(battery, CFSTR(kIOPSPowerSourceStateKey));
*isOnAC = (kCFCompareEqualTo == CFStringCompare(power_state, CFSTR(kIOPSACPowerValue), 0))
? AC_PRESENT
: AC_ABSENT;
/* Get the percentage remaining */
double current;
double max;
CFNumberGetValue(CFDictionaryGetValue(battery, CFSTR(kIOPSCurrentCapacityKey)),
kCFNumberDoubleType, &current);
CFNumberGetValue(CFDictionaryGetValue(battery, CFSTR(kIOPSMaxCapacityKey)),
kCFNumberDoubleType, &max);
*percent = (current * 100.0) / max;
CFRelease(battery);
}
CFRelease(list);
CFRelease(power_sources);
}