* This removes duplicated code that adjusts the sort direction from every
OS-specific folder.
* Most fields in a regular htop screen are OS-independent, so trying
Process_compare first and only falling back to the OS-specific
compareByKey function if it's an OS-specific field makes sense.
* This will allow us to override the sortKey in a global way without having
to edit each OS-specific file.
By storing the per-process m_resident and m_virt values in the form
htop wants to display them in (KB, not pages), we no longer need to
have definitions of pageSize and pageSizeKB in the common CRT code.
These variables were never really CRT (i.e. display) related in the
first place. It turns out the darwin platform code doesn't need to
use these at all (the process values are extracted from the kernel
in bytes not pages) and the other platforms can each use their own
local pagesize variables, in more appropriate locations.
Some platforms were actually already doing this, so this change is
removing duplication of logic and variables there.
Move platform-specific code out of the htop.c main function
and into the platform sub-directories - primarily this is
the Linux procfs path check and sensors setup/teardown; not
needed on any other platforms. No functional changes here.
Generic data, as CPU and memory usage, are used by Meters.
In paused mode they would stop receiving updates and especially Graph
Meters would stop showing continuous data.
Improves: #214Closes: #253
man:sysconf(3) states:
The values obtained from these functions are system configuration constants.
They do not change during the lifetime of a process.
Add a date meter and sort header and source files in Makefile
Change the lists of header and source files sorted alphabetical and one
file per line. This way diffs become better readable and merges easier.
This is a straightforward extension of the existing multi-column CPU meter
code, which now allows for up CPU meters to be displayed in up to 16 columns.
This also adds the meter declarations to all the platform-specific code.
The MIN, MAX, CLAMP, MINIMUM, and MAXIMUM macros appear
throughout the codebase with many re-definitions. Make
a single copy of each in a common header file, and use
the BSD variants of MINIMUM/MAXIMUM due to conflicts in
the system <sys/param.h> headers.
Reasoning:
- implementation was unsound -- broke down when I added a fairly
basic macro definition expanding to a struct initializer in a *.c
file.
- made it way too easy (e.g. via otherwise totally innocuous git
commands) to end up with timestamps such that it always ran
MakeHeader.py but never used its output, leading to overbuild noise
when running what should be a null 'make'.
- but mostly: it's just an awkward way of dealing with C code.
openzfs_sysctl_init() now returns void instead of int.
The ZfsArcStats->enabled flag is set inside the init function
now, instead of having to be set from its return value.
Preparation for more flag setting in Compressed ARC commit.
ZfsArcMeter_readStats() added and all Meter->values[] setting
moved to it, eliminating duplicated code in
{darwin,freebsd,linux,solaris}/Platform.c.
Specifically, Platform_signals[] and Platform_numberOfSignals. Both are
not supposed to be mutable. Marking them 'const' puts them into rodata
sections in binary. And for Platform_numberOfSignals, this aids
optimization (aids only Link Time Optimization for now). :)
Signed-off-by: Kang-Che Sung <explorer09@gmail.com>
htop currently expects m_size and m_resident in pages (Process.c).
According to the proc_info.h header, the values returned by libproc
are in bytes:
http://www.opensource.apple.com/source/xnu/xnu-1456.1.26/bsd/sys/proc_info.h
Eventually we should change the htop crossplatform API to expect memory
in bytes, but this is the smaller change that should fix it.
Closes#385.
With the CLAMP macro replacing the combination of MIN and MAX, we will
have at least two advantages:
1. It's more obvious semantically.
2. There are no more mixes of confusing uses like MIN(MAX(a,b),c) and
MAX(MIN(a,b),c) and MIN(a,MAX(b,c)) appearing everywhere. We unify
the 'clamping' with a single macro.
Note that the behavior of this CLAMP macro is different from
the combination `MAX(low,MIN(x,high))`.
* This CLAMP macro expands to two comparisons instead of three from
MAX and MIN combination. In theory, this makes the code slightly
smaller, in case that (low) or (high) or both are computed at
runtime, so that compilers cannot optimize them. (The third
comparison will matter if (low)>(high); see below.)
* CLAMP has a side effect, that if (low)>(high) it will produce weird
results. Unlike MIN & MAX which will force either (low) or (high) to
win. No assertion of ((low)<=(high)) is done in this macro, for now.
This CLAMP macro is implemented like described in glib
<http://developer.gnome.org/glib/stable/glib-Standard-Macros.html>
and does not handle weird uses like CLAMP(a++, low++, high--) .