/* htop - darwin/Platform.c (C) 2014 Hisham H. Muhammad (C) 2015 David C. Hunt Released under the GNU GPLv2, see the COPYING file in the source distribution for its full text. */ #include "Platform.h" #include "Macros.h" #include "CPUMeter.h" #include "MemoryMeter.h" #include "SwapMeter.h" #include "TasksMeter.h" #include "LoadAverageMeter.h" #include "ClockMeter.h" #include "DateMeter.h" #include "DateTimeMeter.h" #include "HostnameMeter.h" #include "ProcessLocksScreen.h" #include "UptimeMeter.h" #include "zfs/ZfsArcMeter.h" #include "zfs/ZfsCompressedArcMeter.h" #include "DarwinProcessList.h" #include #include #include #include #include #include ProcessField Platform_defaultFields[] = { PID, USER, PRIORITY, NICE, M_VIRT, M_RESIDENT, STATE, PERCENT_CPU, PERCENT_MEM, TIME, COMM, 0 }; const SignalItem Platform_signals[] = { { .name = " 0 Cancel", .number = 0 }, { .name = " 1 SIGHUP", .number = 1 }, { .name = " 2 SIGINT", .number = 2 }, { .name = " 3 SIGQUIT", .number = 3 }, { .name = " 4 SIGILL", .number = 4 }, { .name = " 5 SIGTRAP", .number = 5 }, { .name = " 6 SIGABRT", .number = 6 }, { .name = " 6 SIGIOT", .number = 6 }, { .name = " 7 SIGEMT", .number = 7 }, { .name = " 8 SIGFPE", .number = 8 }, { .name = " 9 SIGKILL", .number = 9 }, { .name = "10 SIGBUS", .number = 10 }, { .name = "11 SIGSEGV", .number = 11 }, { .name = "12 SIGSYS", .number = 12 }, { .name = "13 SIGPIPE", .number = 13 }, { .name = "14 SIGALRM", .number = 14 }, { .name = "15 SIGTERM", .number = 15 }, { .name = "16 SIGURG", .number = 16 }, { .name = "17 SIGSTOP", .number = 17 }, { .name = "18 SIGTSTP", .number = 18 }, { .name = "19 SIGCONT", .number = 19 }, { .name = "20 SIGCHLD", .number = 20 }, { .name = "21 SIGTTIN", .number = 21 }, { .name = "22 SIGTTOU", .number = 22 }, { .name = "23 SIGIO", .number = 23 }, { .name = "24 SIGXCPU", .number = 24 }, { .name = "25 SIGXFSZ", .number = 25 }, { .name = "26 SIGVTALRM", .number = 26 }, { .name = "27 SIGPROF", .number = 27 }, { .name = "28 SIGWINCH", .number = 28 }, { .name = "29 SIGINFO", .number = 29 }, { .name = "30 SIGUSR1", .number = 30 }, { .name = "31 SIGUSR2", .number = 31 }, }; const unsigned int Platform_numberOfSignals = ARRAYSIZE(Platform_signals); const MeterClass* const Platform_meterTypes[] = { &CPUMeter_class, &ClockMeter_class, &DateMeter_class, &DateTimeMeter_class, &LoadAverageMeter_class, &LoadMeter_class, &MemoryMeter_class, &SwapMeter_class, &TasksMeter_class, &BatteryMeter_class, &HostnameMeter_class, &UptimeMeter_class, &AllCPUsMeter_class, &AllCPUs2Meter_class, &AllCPUs4Meter_class, &AllCPUs8Meter_class, &LeftCPUsMeter_class, &RightCPUsMeter_class, &LeftCPUs2Meter_class, &RightCPUs2Meter_class, &LeftCPUs4Meter_class, &RightCPUs4Meter_class, &LeftCPUs8Meter_class, &RightCPUs8Meter_class, &ZfsArcMeter_class, &ZfsCompressedArcMeter_class, &BlankMeter_class, NULL }; int Platform_numberOfFields = LAST_PROCESSFIELD; void Platform_init(void) { /* no platform-specific setup needed */ } void Platform_done(void) { /* no platform-specific cleanup needed */ } void Platform_setBindings(Htop_Action* keys) { /* no platform-specific key bindings */ (void) keys; } int Platform_getUptime() { struct timeval bootTime, currTime; int mib[2] = { CTL_KERN, KERN_BOOTTIME }; size_t size = sizeof(bootTime); int err = sysctl(mib, 2, &bootTime, &size, NULL, 0); if (err) { return -1; } gettimeofday(&currTime, NULL); return (int) difftime(currTime.tv_sec, bootTime.tv_sec); } void Platform_getLoadAverage(double* one, double* five, double* fifteen) { double results[3]; if (3 == getloadavg(results, 3)) { *one = results[0]; *five = results[1]; *fifteen = results[2]; } else { *one = 0; *five = 0; *fifteen = 0; } } int Platform_getMaxPid() { /* http://opensource.apple.com/source/xnu/xnu-2782.1.97/bsd/sys/proc_internal.hh */ return 99999; } ProcessPidColumn Process_pidColumns[] = { { .id = PID, .label = "PID" }, { .id = PPID, .label = "PPID" }, { .id = TPGID, .label = "TPGID" }, { .id = TGID, .label = "TGID" }, { .id = PGRP, .label = "PGRP" }, { .id = SESSION, .label = "SID" }, { .id = 0, .label = NULL }, }; static double Platform_setCPUAverageValues(Meter* mtr) { const ProcessList* dpl = mtr->pl; int cpus = dpl->cpuCount; double sumNice = 0.0; double sumNormal = 0.0; double sumKernel = 0.0; double sumPercent = 0.0; for (int i = 1; i <= cpus; i++) { sumPercent += Platform_setCPUValues(mtr, i); sumNice += mtr->values[CPU_METER_NICE]; sumNormal += mtr->values[CPU_METER_NORMAL]; sumKernel += mtr->values[CPU_METER_KERNEL]; } mtr->values[CPU_METER_NICE] = sumNice / cpus; mtr->values[CPU_METER_NORMAL] = sumNormal / cpus; mtr->values[CPU_METER_KERNEL] = sumKernel / cpus; return sumPercent / cpus; } double Platform_setCPUValues(Meter* mtr, int cpu) { if (cpu == 0) { return Platform_setCPUAverageValues(mtr); } const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl; const processor_cpu_load_info_t prev = &dpl->prev_load[cpu - 1]; const processor_cpu_load_info_t curr = &dpl->curr_load[cpu - 1]; double total = 0; /* Take the sums */ for (size_t i = 0; i < CPU_STATE_MAX; ++i) { total += (double)curr->cpu_ticks[i] - (double)prev->cpu_ticks[i]; } mtr->values[CPU_METER_NICE] = ((double)curr->cpu_ticks[CPU_STATE_NICE] - (double)prev->cpu_ticks[CPU_STATE_NICE]) * 100.0 / total; mtr->values[CPU_METER_NORMAL] = ((double)curr->cpu_ticks[CPU_STATE_USER] - (double)prev->cpu_ticks[CPU_STATE_USER]) * 100.0 / total; mtr->values[CPU_METER_KERNEL] = ((double)curr->cpu_ticks[CPU_STATE_SYSTEM] - (double)prev->cpu_ticks[CPU_STATE_SYSTEM]) * 100.0 / total; mtr->curItems = 3; /* Convert to percent and return */ total = mtr->values[CPU_METER_NICE] + mtr->values[CPU_METER_NORMAL] + mtr->values[CPU_METER_KERNEL]; mtr->values[CPU_METER_FREQUENCY] = NAN; mtr->values[CPU_METER_TEMPERATURE] = NAN; return CLAMP(total, 0.0, 100.0); } void Platform_setMemoryValues(Meter* mtr) { const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl; const struct vm_statistics* vm = &dpl->vm_stats; double page_K = (double)vm_page_size / (double)1024; mtr->total = dpl->host_info.max_mem / 1024; mtr->values[0] = (double)(vm->active_count + vm->wire_count) * page_K; mtr->values[1] = (double)vm->purgeable_count * page_K; mtr->values[2] = (double)vm->inactive_count * page_K; } void Platform_setSwapValues(Meter* mtr) { int mib[2] = {CTL_VM, VM_SWAPUSAGE}; struct xsw_usage swapused; size_t swlen = sizeof(swapused); sysctl(mib, 2, &swapused, &swlen, NULL, 0); mtr->total = swapused.xsu_total / 1024; mtr->values[0] = swapused.xsu_used / 1024; } void Platform_setZfsArcValues(Meter* this) { const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl; ZfsArcMeter_readStats(this, &(dpl->zfs)); } void Platform_setZfsCompressedArcValues(Meter* this) { const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl; ZfsCompressedArcMeter_readStats(this, &(dpl->zfs)); } char* Platform_getProcessEnv(pid_t pid) { char* env = NULL; int argmax; size_t bufsz = sizeof(argmax); int mib[3]; mib[0] = CTL_KERN; mib[1] = KERN_ARGMAX; if (sysctl(mib, 2, &argmax, &bufsz, 0, 0) == 0) { char* buf = xMalloc(argmax); if (buf) { mib[0] = CTL_KERN; mib[1] = KERN_PROCARGS2; mib[2] = pid; bufsz = argmax; if (sysctl(mib, 3, buf, &bufsz, 0, 0) == 0) { if (bufsz > sizeof(int)) { char *p = buf, *endp = buf + bufsz; int argc = *(int*)(void*)p; p += sizeof(int); // skip exe p = strchr(p, 0) + 1; // skip padding while (!*p && p < endp) ++p; // skip argv for (; argc-- && p < endp; p = strrchr(p, 0) + 1) ; // skip padding while (!*p && p < endp) ++p; size_t size = endp - p; env = xMalloc(size + 2); memcpy(env, p, size); env[size] = 0; env[size + 1] = 0; } } free(buf); } } return env; } char* Platform_getInodeFilename(pid_t pid, ino_t inode) { (void)pid; (void)inode; return NULL; } FileLocks_ProcessData* Platform_getProcessLocks(pid_t pid) { (void)pid; return NULL; } bool Platform_getDiskIO(DiskIOData* data) { // TODO (void)data; return false; } bool Platform_getNetworkIO(unsigned long int* bytesReceived, unsigned long int* packetsReceived, unsigned long int* bytesTransmitted, unsigned long int* packetsTransmitted) { // TODO *bytesReceived = 0; *packetsReceived = 0; *bytesTransmitted = 0; *packetsTransmitted = 0; return false; } void Platform_getBattery(double* percent, ACPresence* isOnAC) { CFTypeRef power_sources = IOPSCopyPowerSourcesInfo(); *percent = NAN; *isOnAC = AC_ERROR; if (NULL == power_sources) return; CFArrayRef list = IOPSCopyPowerSourcesList(power_sources); CFDictionaryRef battery = NULL; int len; if (NULL == list) { CFRelease(power_sources); return; } len = CFArrayGetCount(list); /* Get the battery */ for (int i = 0; i < len && battery == NULL; ++i) { CFDictionaryRef candidate = IOPSGetPowerSourceDescription(power_sources, CFArrayGetValueAtIndex(list, i)); /* GET rule */ CFStringRef type; if (NULL != candidate) { type = (CFStringRef) CFDictionaryGetValue(candidate, CFSTR(kIOPSTransportTypeKey)); /* GET rule */ if (kCFCompareEqualTo == CFStringCompare(type, CFSTR(kIOPSInternalType), 0)) { CFRetain(candidate); battery = candidate; } } } if (NULL != battery) { /* Determine the AC state */ CFStringRef power_state = CFDictionaryGetValue(battery, CFSTR(kIOPSPowerSourceStateKey)); *isOnAC = (kCFCompareEqualTo == CFStringCompare(power_state, CFSTR(kIOPSACPowerValue), 0)) ? AC_PRESENT : AC_ABSENT; /* Get the percentage remaining */ double current; double max; CFNumberGetValue(CFDictionaryGetValue(battery, CFSTR(kIOPSCurrentCapacityKey)), kCFNumberDoubleType, ¤t); CFNumberGetValue(CFDictionaryGetValue(battery, CFSTR(kIOPSMaxCapacityKey)), kCFNumberDoubleType, &max); *percent = (current * 100.0) / max; CFRelease(battery); } CFRelease(list); CFRelease(power_sources); }