/* htop - PCPProcessList.c (C) 2014 Hisham H. Muhammad (C) 2020-2021 htop dev team (C) 2020-2021 Red Hat, Inc. Released under the GNU GPLv2, see the COPYING file in the source distribution for its full text. */ #include "config.h" // IWYU pragma: keep #include "pcp/PCPProcessList.h" #include #include #include #include #include #include "Macros.h" #include "Object.h" #include "Platform.h" #include "Process.h" #include "Settings.h" #include "XUtils.h" #include "pcp/PCPProcess.h" static int PCPProcessList_computeCPUcount(void) { int cpus; if ((cpus = Platform_getMaxCPU()) <= 0) cpus = Metric_instanceCount(PCP_PERCPU_SYSTEM); return cpus > 1 ? cpus : 1; } static void PCPProcessList_updateCPUcount(PCPProcessList* this) { ProcessList* pl = &(this->super); unsigned int cpus = PCPProcessList_computeCPUcount(); if (cpus == pl->existingCPUs) return; pl->existingCPUs = cpus; // TODO: support offline CPUs and hot swapping pl->activeCPUs = pl->existingCPUs; free(this->percpu); free(this->values); this->percpu = xCalloc(cpus, sizeof(pmAtomValue *)); for (unsigned int i = 0; i < cpus; i++) this->percpu[i] = xCalloc(CPU_METRIC_COUNT, sizeof(pmAtomValue)); this->values = xCalloc(cpus, sizeof(pmAtomValue)); } static char* setUser(UsersTable* this, unsigned int uid, int pid, int offset) { char* name = Hashtable_get(this->users, uid); if (name) return name; pmAtomValue value; if (Metric_instance(PCP_PROC_ID_USER, pid, offset, &value, PM_TYPE_STRING)) { Hashtable_put(this->users, uid, value.cp); name = value.cp; } return name; } ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) { PCPProcessList* this = xCalloc(1, sizeof(PCPProcessList)); ProcessList* super = &(this->super); ProcessList_init(super, Class(PCPProcess), usersTable, dynamicMeters, dynamicColumns, pidMatchList, userId); struct timeval timestamp; gettimeofday(×tamp, NULL); this->timestamp = pmtimevalToReal(×tamp); this->cpu = xCalloc(CPU_METRIC_COUNT, sizeof(pmAtomValue)); PCPProcessList_updateCPUcount(this); return super; } void ProcessList_delete(ProcessList* pl) { PCPProcessList* this = (PCPProcessList*) pl; ProcessList_done(pl); free(this->values); for (unsigned int i = 0; i < pl->existingCPUs; i++) free(this->percpu[i]); free(this->percpu); free(this->cpu); free(this); } static inline unsigned long Metric_instance_s32(int metric, int pid, int offset, unsigned long fallback) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_32)) return value.l; return fallback; } static inline unsigned long Metric_instance_u32(int metric, int pid, int offset, unsigned long fallback) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_U32)) return value.ul; return fallback; } static inline unsigned long long Metric_instance_u64(int metric, int pid, int offset, unsigned long long fallback) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_U64)) return value.ull; return fallback; } static inline unsigned long long Metric_instance_time(int metric, int pid, int offset) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_U64)) return value.ull / 10; return 0; } static inline unsigned long long Metric_instance_ONE_K(int metric, int pid, int offset) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_U64)) return value.ull / ONE_K; return ULLONG_MAX; } static inline char Metric_instance_char(int metric, int pid, int offset, char fallback) { pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_STRING)) { char uchar = value.cp[0]; free(value.cp); return uchar; } return fallback; } static void PCPProcessList_updateID(Process* process, int pid, int offset) { process->tgid = Metric_instance_u32(PCP_PROC_TGID, pid, offset, 1); process->ppid = Metric_instance_u32(PCP_PROC_PPID, pid, offset, 1); process->state = Metric_instance_char(PCP_PROC_STATE, pid, offset, '?'); } static void PCPProcessList_updateInfo(Process* process, int pid, int offset, char* command, size_t commLen) { PCPProcess* pp = (PCPProcess*) process; pmAtomValue value; if (!Metric_instance(PCP_PROC_CMD, pid, offset, &value, PM_TYPE_STRING)) value.cp = xStrdup(""); String_safeStrncpy(command, value.cp, commLen); free(value.cp); process->pgrp = Metric_instance_u32(PCP_PROC_PGRP, pid, offset, 0); process->session = Metric_instance_u32(PCP_PROC_SESSION, pid, offset, 0); process->tty_nr = Metric_instance_u32(PCP_PROC_TTY, pid, offset, 0); process->tpgid = Metric_instance_u32(PCP_PROC_TTYPGRP, pid, offset, 0); process->minflt = Metric_instance_u32(PCP_PROC_MINFLT, pid, offset, 0); pp->cminflt = Metric_instance_u32(PCP_PROC_CMINFLT, pid, offset, 0); process->majflt = Metric_instance_u32(PCP_PROC_MAJFLT, pid, offset, 0); pp->cmajflt = Metric_instance_u32(PCP_PROC_CMAJFLT, pid, offset, 0); pp->utime = Metric_instance_time(PCP_PROC_UTIME, pid, offset); pp->stime = Metric_instance_time(PCP_PROC_STIME, pid, offset); pp->cutime = Metric_instance_time(PCP_PROC_CUTIME, pid, offset); pp->cstime = Metric_instance_time(PCP_PROC_CSTIME, pid, offset); process->priority = Metric_instance_u32(PCP_PROC_PRIORITY, pid, offset, 0); process->nice = Metric_instance_s32(PCP_PROC_NICE, pid, offset, 0); process->nlwp = Metric_instance_u32(PCP_PROC_THREADS, pid, offset, 0); process->starttime_ctime = Metric_instance_time(PCP_PROC_STARTTIME, pid, offset); process->processor = Metric_instance_u32(PCP_PROC_PROCESSOR, pid, offset, 0); process->time = pp->utime + pp->stime; } static void PCPProcessList_updateIO(PCPProcess* pp, int pid, int offset, unsigned long long now) { pmAtomValue value; pp->io_rchar = Metric_instance_ONE_K(PCP_PROC_IO_RCHAR, pid, offset); pp->io_wchar = Metric_instance_ONE_K(PCP_PROC_IO_WCHAR, pid, offset); pp->io_syscr = Metric_instance_u64(PCP_PROC_IO_SYSCR, pid, offset, ULLONG_MAX); pp->io_syscw = Metric_instance_u64(PCP_PROC_IO_SYSCW, pid, offset, ULLONG_MAX); pp->io_cancelled_write_bytes = Metric_instance_ONE_K(PCP_PROC_IO_CANCELLED, pid, offset); if (Metric_instance(PCP_PROC_IO_READB, pid, offset, &value, PM_TYPE_U64)) { unsigned long long last_read = pp->io_read_bytes; pp->io_read_bytes = value.ull / ONE_K; pp->io_rate_read_bps = ONE_K * (pp->io_read_bytes - last_read) / (now - pp->io_last_scan_time); } else { pp->io_read_bytes = ULLONG_MAX; pp->io_rate_read_bps = NAN; } if (Metric_instance(PCP_PROC_IO_WRITEB, pid, offset, &value, PM_TYPE_U64)) { unsigned long long last_write = pp->io_write_bytes; pp->io_write_bytes = value.ull; pp->io_rate_write_bps = ONE_K * (pp->io_write_bytes - last_write) / (now - pp->io_last_scan_time); } else { pp->io_write_bytes = ULLONG_MAX; pp->io_rate_write_bps = NAN; } pp->io_last_scan_time = now; } static void PCPProcessList_updateMemory(PCPProcess* pp, int pid, int offset) { pp->super.m_virt = Metric_instance_u32(PCP_PROC_MEM_SIZE, pid, offset, 0); pp->super.m_resident = Metric_instance_u32(PCP_PROC_MEM_RSS, pid, offset, 0); pp->m_share = Metric_instance_u32(PCP_PROC_MEM_SHARE, pid, offset, 0); pp->m_trs = Metric_instance_u32(PCP_PROC_MEM_TEXTRS, pid, offset, 0); pp->m_lrs = Metric_instance_u32(PCP_PROC_MEM_LIBRS, pid, offset, 0); pp->m_drs = Metric_instance_u32(PCP_PROC_MEM_DATRS, pid, offset, 0); pp->m_dt = Metric_instance_u32(PCP_PROC_MEM_DIRTY, pid, offset, 0); } static void PCPProcessList_updateSmaps(PCPProcess* pp, pid_t pid, int offset) { pp->m_pss = Metric_instance_u64(PCP_PROC_SMAPS_PSS, pid, offset, 0); pp->m_swap = Metric_instance_u64(PCP_PROC_SMAPS_SWAP, pid, offset, 0); pp->m_psswp = Metric_instance_u64(PCP_PROC_SMAPS_SWAPPSS, pid, offset, 0); } static void PCPProcessList_readOomData(PCPProcess* pp, int pid, int offset) { pp->oom = Metric_instance_u32(PCP_PROC_OOMSCORE, pid, offset, 0); } static void PCPProcessList_readCtxtData(PCPProcess* pp, int pid, int offset) { pmAtomValue value; unsigned long ctxt = 0; if (Metric_instance(PCP_PROC_VCTXSW, pid, offset, &value, PM_TYPE_U32)) ctxt += value.ul; if (Metric_instance(PCP_PROC_NVCTXSW, pid, offset, &value, PM_TYPE_U32)) ctxt += value.ul; pp->ctxt_diff = ctxt > pp->ctxt_total ? ctxt - pp->ctxt_total : 0; pp->ctxt_total = ctxt; } static char* setString(Metric metric, int pid, int offset, char* string) { if (string) free(string); pmAtomValue value; if (Metric_instance(metric, pid, offset, &value, PM_TYPE_STRING)) string = value.cp; else string = NULL; return string; } static void PCPProcessList_updateTTY(Process* process, int pid, int offset) { process->tty_name = setString(PCP_PROC_TTYNAME, pid, offset, process->tty_name); } static void PCPProcessList_readCGroups(PCPProcess* pp, int pid, int offset) { pp->cgroup = setString(PCP_PROC_CGROUPS, pid, offset, pp->cgroup); } static void PCPProcessList_readSecattrData(PCPProcess* pp, int pid, int offset) { pp->secattr = setString(PCP_PROC_LABELS, pid, offset, pp->secattr); } static void PCPProcessList_readCwd(PCPProcess* pp, int pid, int offset) { pp->super.procCwd = setString(PCP_PROC_CWD, pid, offset, pp->super.procCwd); } static void PCPProcessList_updateUsername(Process* process, int pid, int offset, UsersTable* users) { process->st_uid = Metric_instance_u32(PCP_PROC_ID_UID, pid, offset, 0); process->user = setUser(users, process->st_uid, pid, offset); } static void PCPProcessList_updateCmdline(Process* process, int pid, int offset, const char* comm) { pmAtomValue value; if (!Metric_instance(PCP_PROC_PSARGS, pid, offset, &value, PM_TYPE_STRING)) { if (process->state != 'Z') process->isKernelThread = true; Process_updateCmdline(process, NULL, 0, 0); return; } char* command = value.cp; int length = strlen(command); if (command[0] != '(') { process->isKernelThread = false; } else { ++command; --length; if (command[length - 1] == ')') command[--length] = '\0'; process->isKernelThread = true; } int tokenStart = 0; for (int i = 0; i < length; i++) { /* htop considers the next character after the last / that is before * basenameOffset, as the start of the basename in cmdline - see * Process_writeCommand */ if (command[i] == '/') tokenStart = i + 1; } int tokenEnd = length; Process_updateCmdline(process, command, tokenStart, tokenEnd); free(value.cp); Process_updateComm(process, comm); if (Metric_instance(PCP_PROC_EXE, pid, offset, &value, PM_TYPE_STRING)) { Process_updateExe(process, value.cp); free(value.cp); } } static bool PCPProcessList_updateProcesses(PCPProcessList* this, double period, struct timeval* tv) { ProcessList* pl = (ProcessList*) this; const Settings* settings = pl->settings; bool hideKernelThreads = settings->hideKernelThreads; bool hideUserlandThreads = settings->hideUserlandThreads; unsigned long long now = tv->tv_sec * 1000LL + tv->tv_usec / 1000LL; int pid = -1, offset = -1; /* for every process ... */ while (Metric_iterate(PCP_PROC_PID, &pid, &offset)) { bool preExisting; Process* proc = ProcessList_getProcess(pl, pid, &preExisting, PCPProcess_new); PCPProcess* pp = (PCPProcess*) proc; PCPProcessList_updateID(proc, pid, offset); proc->isUserlandThread = proc->pid != proc->tgid; pp->offset = offset >= 0 ? offset : 0; /* * These conditions will not trigger on first occurrence, cause we need to * add the process to the ProcessList and do all one time scans * (e.g. parsing the cmdline to detect a kernel thread) * But it will short-circuit subsequent scans. */ if (preExisting && hideKernelThreads && Process_isKernelThread(proc)) { proc->updated = true; proc->show = false; if (proc->state == 'R') pl->runningTasks++; pl->kernelThreads++; pl->totalTasks++; continue; } if (preExisting && hideUserlandThreads && Process_isUserlandThread(proc)) { proc->updated = true; proc->show = false; if (proc->state == 'R') pl->runningTasks++; pl->userlandThreads++; pl->totalTasks++; continue; } if (settings->flags & PROCESS_FLAG_IO) PCPProcessList_updateIO(pp, pid, offset, now); PCPProcessList_updateMemory(pp, pid, offset); if ((settings->flags & PROCESS_FLAG_LINUX_SMAPS) && (Process_isKernelThread(proc) == false)) { if (Metric_enabled(PCP_PROC_SMAPS_PSS)) PCPProcessList_updateSmaps(pp, pid, offset); } char command[MAX_NAME + 1]; unsigned int tty_nr = proc->tty_nr; unsigned long long int lasttimes = pp->utime + pp->stime; PCPProcessList_updateInfo(proc, pid, offset, command, sizeof(command)); proc->starttime_ctime += Platform_getBootTime(); if (tty_nr != proc->tty_nr) PCPProcessList_updateTTY(proc, pid, offset); float percent_cpu = (pp->utime + pp->stime - lasttimes) / period * 100.0; proc->percent_cpu = isnan(percent_cpu) ? 0.0 : CLAMP(percent_cpu, 0.0, pl->activeCPUs * 100.0); proc->percent_mem = proc->m_resident / (double)pl->totalMem * 100.0; PCPProcessList_updateUsername(proc, pid, offset, pl->usersTable); if (!preExisting) { PCPProcessList_updateCmdline(proc, pid, offset, command); Process_fillStarttimeBuffer(proc); ProcessList_add(pl, proc); } else if (settings->updateProcessNames && proc->state != 'Z') { PCPProcessList_updateCmdline(proc, pid, offset, command); } if (settings->flags & PROCESS_FLAG_LINUX_CGROUP) PCPProcessList_readCGroups(pp, pid, offset); if (settings->flags & PROCESS_FLAG_LINUX_OOM) PCPProcessList_readOomData(pp, pid, offset); if (settings->flags & PROCESS_FLAG_LINUX_CTXT) PCPProcessList_readCtxtData(pp, pid, offset); if (settings->flags & PROCESS_FLAG_LINUX_SECATTR) PCPProcessList_readSecattrData(pp, pid, offset); if (settings->flags & PROCESS_FLAG_CWD) PCPProcessList_readCwd(pp, pid, offset); if (proc->state == 'Z' && !proc->cmdline && command[0]) { Process_updateCmdline(proc, command, 0, strlen(command)); } else if (Process_isThread(proc)) { if ((settings->showThreadNames || Process_isKernelThread(proc)) && command[0]) { Process_updateCmdline(proc, command, 0, strlen(command)); } if (Process_isKernelThread(proc)) { pl->kernelThreads++; } else { pl->userlandThreads++; } } /* Set at the end when we know if a new entry is a thread */ proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc))); pl->totalTasks++; if (proc->state == 'R') pl->runningTasks++; proc->updated = true; } return true; } static void PCPProcessList_updateMemoryInfo(ProcessList* super) { unsigned long long int freeMem = 0; unsigned long long int swapFreeMem = 0; unsigned long long int sreclaimableMem = 0; super->totalMem = super->usedMem = super->cachedMem = 0; super->usedSwap = super->totalSwap = super->sharedMem = 0; pmAtomValue value; if (Metric_values(PCP_MEM_TOTAL, &value, 1, PM_TYPE_U64) != NULL) super->totalMem = value.ull; if (Metric_values(PCP_MEM_FREE, &value, 1, PM_TYPE_U64) != NULL) freeMem = value.ull; if (Metric_values(PCP_MEM_BUFFERS, &value, 1, PM_TYPE_U64) != NULL) super->buffersMem = value.ull; if (Metric_values(PCP_MEM_SRECLAIM, &value, 1, PM_TYPE_U64) != NULL) sreclaimableMem = value.ull; if (Metric_values(PCP_MEM_SHARED, &value, 1, PM_TYPE_U64) != NULL) super->sharedMem = value.ull; if (Metric_values(PCP_MEM_CACHED, &value, 1, PM_TYPE_U64) != NULL) super->cachedMem = value.ull + sreclaimableMem - super->sharedMem; const memory_t usedDiff = freeMem + super->cachedMem + sreclaimableMem + super->buffersMem; super->usedMem = (super->totalMem >= usedDiff) ? super->totalMem - usedDiff : super->totalMem - freeMem; if (Metric_values(PCP_MEM_AVAILABLE, &value, 1, PM_TYPE_U64) != NULL) super->availableMem = MINIMUM(value.ull, super->totalMem); else super->availableMem = freeMem; if (Metric_values(PCP_MEM_SWAPFREE, &value, 1, PM_TYPE_U64) != NULL) swapFreeMem = value.ull; if (Metric_values(PCP_MEM_SWAPTOTAL, &value, 1, PM_TYPE_U64) != NULL) super->totalSwap = value.ull; if (Metric_values(PCP_MEM_SWAPCACHED, &value, 1, PM_TYPE_U64) != NULL) super->cachedSwap = value.ull; super->usedSwap = super->totalSwap - swapFreeMem - super->cachedSwap; } /* make copies of previously sampled values to avoid overwrite */ static inline void PCPProcessList_backupCPUTime(pmAtomValue* values) { /* the PERIOD fields (must) mirror the TIME fields */ for (int metric = CPU_TOTAL_TIME; metric < CPU_TOTAL_PERIOD; metric++) { values[metric + CPU_TOTAL_PERIOD] = values[metric]; } } static inline void PCPProcessList_saveCPUTimePeriod(pmAtomValue* values, CPUMetric previous, pmAtomValue* latest) { pmAtomValue* value; /* new value for period */ value = &values[previous]; if (latest->ull > value->ull) value->ull = latest->ull - value->ull; else value->ull = 0; /* new value for time */ value = &values[previous - CPU_TOTAL_PERIOD]; value->ull = latest->ull; } /* using copied sampled values and new values, calculate derivations */ static void PCPProcessList_deriveCPUTime(pmAtomValue* values) { pmAtomValue* usertime = &values[CPU_USER_TIME]; pmAtomValue* guesttime = &values[CPU_GUEST_TIME]; usertime->ull -= guesttime->ull; pmAtomValue* nicetime = &values[CPU_NICE_TIME]; pmAtomValue* guestnicetime = &values[CPU_GUESTNICE_TIME]; nicetime->ull -= guestnicetime->ull; pmAtomValue* idletime = &values[CPU_IDLE_TIME]; pmAtomValue* iowaittime = &values[CPU_IOWAIT_TIME]; pmAtomValue* idlealltime = &values[CPU_IDLE_ALL_TIME]; idlealltime->ull = idletime->ull + iowaittime->ull; pmAtomValue* systemtime = &values[CPU_SYSTEM_TIME]; pmAtomValue* irqtime = &values[CPU_IRQ_TIME]; pmAtomValue* softirqtime = &values[CPU_SOFTIRQ_TIME]; pmAtomValue* systalltime = &values[CPU_SYSTEM_ALL_TIME]; systalltime->ull = systemtime->ull + irqtime->ull + softirqtime->ull; pmAtomValue* virtalltime = &values[CPU_GUEST_TIME]; virtalltime->ull = guesttime->ull + guestnicetime->ull; pmAtomValue* stealtime = &values[CPU_STEAL_TIME]; pmAtomValue* totaltime = &values[CPU_TOTAL_TIME]; totaltime->ull = usertime->ull + nicetime->ull + systalltime->ull + idlealltime->ull + stealtime->ull + virtalltime->ull; PCPProcessList_saveCPUTimePeriod(values, CPU_USER_PERIOD, usertime); PCPProcessList_saveCPUTimePeriod(values, CPU_NICE_PERIOD, nicetime); PCPProcessList_saveCPUTimePeriod(values, CPU_SYSTEM_PERIOD, systemtime); PCPProcessList_saveCPUTimePeriod(values, CPU_SYSTEM_ALL_PERIOD, systalltime); PCPProcessList_saveCPUTimePeriod(values, CPU_IDLE_ALL_PERIOD, idlealltime); PCPProcessList_saveCPUTimePeriod(values, CPU_IDLE_PERIOD, idletime); PCPProcessList_saveCPUTimePeriod(values, CPU_IOWAIT_PERIOD, iowaittime); PCPProcessList_saveCPUTimePeriod(values, CPU_IRQ_PERIOD, irqtime); PCPProcessList_saveCPUTimePeriod(values, CPU_SOFTIRQ_PERIOD, softirqtime); PCPProcessList_saveCPUTimePeriod(values, CPU_STEAL_PERIOD, stealtime); PCPProcessList_saveCPUTimePeriod(values, CPU_GUEST_PERIOD, virtalltime); PCPProcessList_saveCPUTimePeriod(values, CPU_TOTAL_PERIOD, totaltime); } static void PCPProcessList_updateAllCPUTime(PCPProcessList* this, Metric metric, CPUMetric cpumetric) { pmAtomValue* value = &this->cpu[cpumetric]; if (Metric_values(metric, value, 1, PM_TYPE_U64) == NULL) memset(&value, 0, sizeof(pmAtomValue)); } static void PCPProcessList_updatePerCPUTime(PCPProcessList* this, Metric metric, CPUMetric cpumetric) { int cpus = this->super.existingCPUs; if (Metric_values(metric, this->values, cpus, PM_TYPE_U64) == NULL) memset(this->values, 0, cpus * sizeof(pmAtomValue)); for (int i = 0; i < cpus; i++) this->percpu[i][cpumetric].ull = this->values[i].ull; } static void PCPProcessList_updatePerCPUReal(PCPProcessList* this, Metric metric, CPUMetric cpumetric) { int cpus = this->super.existingCPUs; if (Metric_values(metric, this->values, cpus, PM_TYPE_DOUBLE) == NULL) memset(this->values, 0, cpus * sizeof(pmAtomValue)); for (int i = 0; i < cpus; i++) this->percpu[i][cpumetric].d = this->values[i].d; } static inline void PCPProcessList_scanZfsArcstats(PCPProcessList* this) { unsigned long long int dbufSize = 0; unsigned long long int dnodeSize = 0; unsigned long long int bonusSize = 0; pmAtomValue value; memset(&this->zfs, 0, sizeof(ZfsArcStats)); if (Metric_values(PCP_ZFS_ARC_ANON_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.anon = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_C_MAX, &value, 1, PM_TYPE_U64)) this->zfs.max = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_BONUS_SIZE, &value, 1, PM_TYPE_U64)) bonusSize = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_DBUF_SIZE, &value, 1, PM_TYPE_U64)) dbufSize = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_DNODE_SIZE, &value, 1, PM_TYPE_U64)) dnodeSize = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_COMPRESSED_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.compressed = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_UNCOMPRESSED_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.uncompressed = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_HDR_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.header = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_MFU_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.MFU = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_MRU_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.MRU = value.ull / ONE_K; if (Metric_values(PCP_ZFS_ARC_SIZE, &value, 1, PM_TYPE_U64)) this->zfs.size = value.ull / ONE_K; this->zfs.other = (dbufSize + dnodeSize + bonusSize) / ONE_K; this->zfs.enabled = (this->zfs.size > 0); this->zfs.isCompressed = (this->zfs.compressed > 0); } static void PCPProcessList_updateHeader(ProcessList* super, const Settings* settings) { PCPProcessList_updateMemoryInfo(super); PCPProcessList* this = (PCPProcessList*) super; PCPProcessList_updateCPUcount(this); PCPProcessList_backupCPUTime(this->cpu); PCPProcessList_updateAllCPUTime(this, PCP_CPU_USER, CPU_USER_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_NICE, CPU_NICE_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_SYSTEM, CPU_SYSTEM_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_IDLE, CPU_IDLE_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_IOWAIT, CPU_IOWAIT_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_IRQ, CPU_IRQ_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_SOFTIRQ, CPU_SOFTIRQ_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_STEAL, CPU_STEAL_TIME); PCPProcessList_updateAllCPUTime(this, PCP_CPU_GUEST, CPU_GUEST_TIME); PCPProcessList_deriveCPUTime(this->cpu); for (unsigned int i = 0; i < super->existingCPUs; i++) PCPProcessList_backupCPUTime(this->percpu[i]); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_USER, CPU_USER_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_NICE, CPU_NICE_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_SYSTEM, CPU_SYSTEM_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_IDLE, CPU_IDLE_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_IOWAIT, CPU_IOWAIT_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_IRQ, CPU_IRQ_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_SOFTIRQ, CPU_SOFTIRQ_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_STEAL, CPU_STEAL_TIME); PCPProcessList_updatePerCPUTime(this, PCP_PERCPU_GUEST, CPU_GUEST_TIME); for (unsigned int i = 0; i < super->existingCPUs; i++) PCPProcessList_deriveCPUTime(this->percpu[i]); if (settings->showCPUFrequency) PCPProcessList_updatePerCPUReal(this, PCP_HINV_CPUCLOCK, CPU_FREQUENCY); PCPProcessList_scanZfsArcstats(this); } void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) { PCPProcessList* this = (PCPProcessList*) super; const Settings* settings = super->settings; bool enabled = !pauseProcessUpdate; bool flagged = settings->showCPUFrequency; Metric_enable(PCP_HINV_CPUCLOCK, flagged); /* In pause mode do not sample per-process metric values at all */ for (int metric = PCP_PROC_PID; metric < PCP_METRIC_COUNT; metric++) Metric_enable(metric, enabled); flagged = settings->flags & PROCESS_FLAG_LINUX_CGROUP; Metric_enable(PCP_PROC_CGROUPS, flagged && enabled); flagged = settings->flags & PROCESS_FLAG_LINUX_OOM; Metric_enable(PCP_PROC_OOMSCORE, flagged && enabled); flagged = settings->flags & PROCESS_FLAG_LINUX_CTXT; Metric_enable(PCP_PROC_VCTXSW, flagged && enabled); Metric_enable(PCP_PROC_NVCTXSW, flagged && enabled); flagged = settings->flags & PROCESS_FLAG_LINUX_SECATTR; Metric_enable(PCP_PROC_LABELS, flagged && enabled); /* Sample smaps metrics on every second pass to improve performance */ static int smaps_flag; smaps_flag = !!smaps_flag; Metric_enable(PCP_PROC_SMAPS_PSS, smaps_flag && enabled); Metric_enable(PCP_PROC_SMAPS_SWAP, smaps_flag && enabled); Metric_enable(PCP_PROC_SMAPS_SWAPPSS, smaps_flag && enabled); struct timeval timestamp; Metric_fetch(×tamp); double sample = this->timestamp; this->timestamp = pmtimevalToReal(×tamp); PCPProcessList_updateHeader(super, settings); /* In pause mode only update global data for meters (CPU, memory, etc) */ if (pauseProcessUpdate) return; double period = (this->timestamp - sample) * 100; PCPProcessList_updateProcesses(this, period, ×tamp); } bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) { assert(id < super->existingCPUs); // TODO: support offline CPUs and hot swapping (void) super; (void) id; return true; }