/* htop - FreeBSDProcessList.c (C) 2014 Hisham H. Muhammad Released under the GNU GPLv2, see the COPYING file in the source distribution for its full text. */ #include "config.h" // IWYU pragma: keep #include "freebsd/FreeBSDProcessList.h" #include #include #include #include #include #include #include #include // needs to be included before for MAXPATHLEN #include #include #include #include #include #include #include #include #include "CRT.h" #include "Compat.h" #include "FreeBSDProcess.h" #include "Macros.h" #include "Object.h" #include "Process.h" #include "ProcessList.h" #include "Settings.h" #include "XUtils.h" #include "generic/openzfs_sysctl.h" #include "zfs/ZfsArcStats.h" static int MIB_hw_physmem[2]; static int MIB_vm_stats_vm_v_page_count[4]; static int pageSize; static int pageSizeKb; static int MIB_vm_stats_vm_v_wire_count[4]; static int MIB_vm_stats_vm_v_active_count[4]; static int MIB_vm_stats_vm_v_cache_count[4]; static int MIB_vm_stats_vm_v_inactive_count[4]; static int MIB_vm_stats_vm_v_free_count[4]; static int MIB_vfs_bufspace[2]; static int MIB_kern_cp_time[2]; static int MIB_kern_cp_times[2]; static int kernelFScale; ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* pidMatchList, uid_t userId) { size_t len; char errbuf[_POSIX2_LINE_MAX]; FreeBSDProcessList* fpl = xCalloc(1, sizeof(FreeBSDProcessList)); ProcessList* pl = (ProcessList*) fpl; ProcessList_init(pl, Class(FreeBSDProcess), usersTable, dynamicMeters, pidMatchList, userId); // physical memory in system: hw.physmem // physical page size: hw.pagesize // usable pagesize : vm.stats.vm.v_page_size len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len); len = sizeof(pageSize); if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1) CRT_fatalError("Cannot get pagesize by sysctl"); pageSizeKb = pageSize / ONE_K; // usable page count vm.stats.vm.v_page_count // actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len); len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len); len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len); openzfs_sysctl_init(&fpl->zfs); openzfs_sysctl_updateArcStats(&fpl->zfs); int smp = 0; len = sizeof(smp); if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) { smp = 0; } int cpus = 1; len = sizeof(cpus); if (smp) { int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0); if (err) { cpus = 1; } } else { cpus = 1; } size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len); fpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array); fpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array); len = sizeof_cp_time_array; // fetch initial single (or average) CPU clicks from kernel sysctl(MIB_kern_cp_time, 2, fpl->cp_time_o, &len, NULL, 0); // on smp box, fetch rest of initial CPU's clicks if (cpus > 1) { len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len); fpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array); fpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array); len = cpus * sizeof_cp_time_array; sysctl(MIB_kern_cp_times, 2, fpl->cp_times_o, &len, NULL, 0); } pl->existingCPUs = MAXIMUM(cpus, 1); // TODO: support offline CPUs and hot swapping pl->activeCPUs = pl->existingCPUs; if (cpus == 1 ) { fpl->cpus = xRealloc(fpl->cpus, sizeof(CPUData)); } else { // on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well) fpl->cpus = xRealloc(fpl->cpus, (pl->existingCPUs + 1) * sizeof(CPUData)); } len = sizeof(kernelFScale); if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) { //sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed kernelFScale = 2048; } fpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf); if (fpl->kd == NULL) { CRT_fatalError("kvm_openfiles() failed"); } return pl; } void ProcessList_delete(ProcessList* this) { const FreeBSDProcessList* fpl = (FreeBSDProcessList*) this; if (fpl->kd) { kvm_close(fpl->kd); } free(fpl->cp_time_o); free(fpl->cp_time_n); free(fpl->cp_times_o); free(fpl->cp_times_n); free(fpl->cpus); ProcessList_done(this); free(this); } static inline void FreeBSDProcessList_scanCPU(ProcessList* pl) { const FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl; unsigned int cpus = pl->existingCPUs; // actual CPU count unsigned int maxcpu = cpus; // max iteration (in case we have average + smp) int cp_times_offset; assert(cpus > 0); size_t sizeof_cp_time_array; unsigned long* cp_time_n; // old clicks state unsigned long* cp_time_o; // current clicks state unsigned long cp_time_d[CPUSTATES]; double cp_time_p[CPUSTATES]; // get averages or single CPU clicks sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_time, 2, fpl->cp_time_n, &sizeof_cp_time_array, NULL, 0); // get rest of CPUs if (cpus > 1) { // on smp systems FreeBSD kernel concats all CPU states into one long array in // kern.cp_times sysctl OID // we store averages in fpl->cpus[0], and actual cores after that maxcpu = cpus + 1; sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES; sysctl(MIB_kern_cp_times, 2, fpl->cp_times_n, &sizeof_cp_time_array, NULL, 0); } for (unsigned int i = 0; i < maxcpu; i++) { if (cpus == 1) { // single CPU box cp_time_n = fpl->cp_time_n; cp_time_o = fpl->cp_time_o; } else { if (i == 0 ) { // average cp_time_n = fpl->cp_time_n; cp_time_o = fpl->cp_time_o; } else { // specific smp cores cp_times_offset = i - 1; cp_time_n = fpl->cp_times_n + (cp_times_offset * CPUSTATES); cp_time_o = fpl->cp_times_o + (cp_times_offset * CPUSTATES); } } // diff old vs new unsigned long long total_o = 0; unsigned long long total_n = 0; unsigned long long total_d = 0; for (int s = 0; s < CPUSTATES; s++) { cp_time_d[s] = cp_time_n[s] - cp_time_o[s]; total_o += cp_time_o[s]; total_n += cp_time_n[s]; } // totals total_d = total_n - total_o; if (total_d < 1 ) { total_d = 1; } // save current state as old and calc percentages for (int s = 0; s < CPUSTATES; ++s) { cp_time_o[s] = cp_time_n[s]; cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100; } CPUData* cpuData = &(fpl->cpus[i]); cpuData->userPercent = cp_time_p[CP_USER]; cpuData->nicePercent = cp_time_p[CP_NICE]; cpuData->systemPercent = cp_time_p[CP_SYS]; cpuData->irqPercent = cp_time_p[CP_INTR]; cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR]; // this one is not really used //cpuData->idlePercent = cp_time_p[CP_IDLE]; cpuData->temperature = NAN; cpuData->frequency = NAN; const int coreId = (cpus == 1) ? 0 : ((int)i - 1); if (coreId < 0) continue; // TODO: test with hyperthreading and multi-cpu systems if (pl->settings->showCPUTemperature) { int temperature; size_t len = sizeof(temperature); char mibBuffer[32]; xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.temperature", coreId); int r = sysctlbyname(mibBuffer, &temperature, &len, NULL, 0); if (r == 0) cpuData->temperature = (double)(temperature - 2732) / 10.0; // convert from deci-Kelvin to Celsius } // TODO: test with hyperthreading and multi-cpu systems if (pl->settings->showCPUFrequency) { int frequency; size_t len = sizeof(frequency); char mibBuffer[32]; xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.freq", coreId); int r = sysctlbyname(mibBuffer, &frequency, &len, NULL, 0); if (r == 0) cpuData->frequency = frequency; // keep in MHz } } // calculate max temperature and avg frequency for average meter and // propagate frequency to all cores if only supplied for CPU 0 if (cpus > 1) { if (pl->settings->showCPUTemperature) { double maxTemp = NAN; for (unsigned int i = 1; i < maxcpu; i++) { const double coreTemp = fpl->cpus[i].temperature; if (isnan(coreTemp)) continue; maxTemp = MAXIMUM(maxTemp, coreTemp); } fpl->cpus[0].temperature = maxTemp; } if (pl->settings->showCPUFrequency) { const double coreZeroFreq = fpl->cpus[1].frequency; double freqSum = coreZeroFreq; if (!isnan(coreZeroFreq)) { for (unsigned int i = 2; i < maxcpu; i++) { if (isnan(fpl->cpus[i].frequency)) fpl->cpus[i].frequency = coreZeroFreq; freqSum += fpl->cpus[i].frequency; } fpl->cpus[0].frequency = freqSum / (maxcpu - 1); } } } } static inline void FreeBSDProcessList_scanMemoryInfo(ProcessList* pl) { FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl; // @etosan: // memory counter relationships seem to be these: // total = active + wired + inactive + cache + free // htop_used (unavail to anybody) = active + wired // htop_cache (for cache meter) = buffers + cache // user_free (avail to procs) = buffers + inactive + cache + free // // with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free" // and belongs into cache, but is reported as wired by kernel // // htop_used = active + (wired - arc) // htop_cache = buffers + cache + arc u_long totalMem; u_int memActive, memWire, cachedMem; long buffersMem; size_t len; //disabled for now, as it is always smaller than phycal amount of memory... //...to avoid "where is my memory?" questions //sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0); //pl->totalMem *= pageSizeKb; len = sizeof(totalMem); sysctl(MIB_hw_physmem, 2, &(totalMem), &len, NULL, 0); totalMem /= 1024; pl->totalMem = totalMem; len = sizeof(memActive); sysctl(MIB_vm_stats_vm_v_active_count, 4, &(memActive), &len, NULL, 0); memActive *= pageSizeKb; fpl->memActive = memActive; len = sizeof(memWire); sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(memWire), &len, NULL, 0); memWire *= pageSizeKb; fpl->memWire = memWire; len = sizeof(buffersMem); sysctl(MIB_vfs_bufspace, 2, &(buffersMem), &len, NULL, 0); buffersMem /= 1024; pl->buffersMem = buffersMem; len = sizeof(cachedMem); sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(cachedMem), &len, NULL, 0); cachedMem *= pageSizeKb; pl->cachedMem = cachedMem; if (fpl->zfs.enabled) { fpl->memWire -= fpl->zfs.size; pl->cachedMem += fpl->zfs.size; } pl->usedMem = fpl->memActive + fpl->memWire; struct kvm_swap swap[16]; int nswap = kvm_getswapinfo(fpl->kd, swap, ARRAYSIZE(swap), 0); pl->totalSwap = 0; pl->usedSwap = 0; for (int i = 0; i < nswap; i++) { pl->totalSwap += swap[i].ksw_total; pl->usedSwap += swap[i].ksw_used; } pl->totalSwap *= pageSizeKb; pl->usedSwap *= pageSizeKb; } static void FreeBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) { const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, kproc->ki_pid }; char buffer[2048]; size_t size = sizeof(buffer); if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { Process_updateExe(proc, NULL); return; } /* Kernel threads return an empty buffer */ if (buffer[0] == '\0') { Process_updateExe(proc, NULL); return; } Process_updateExe(proc, buffer); } static void FreeBSDProcessList_updateCwd(const struct kinfo_proc* kproc, Process* proc) { const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_CWD, kproc->ki_pid }; char buffer[2048]; size_t size = sizeof(buffer); if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { free(proc->procCwd); proc->procCwd = NULL; return; } /* Kernel threads return an empty buffer */ if (buffer[0] == '\0') { free(proc->procCwd); proc->procCwd = NULL; return; } free_and_xStrdup(&proc->procCwd, buffer); } static void FreeBSDProcessList_updateProcessName(kvm_t* kd, const struct kinfo_proc* kproc, Process* proc) { Process_updateComm(proc, kproc->ki_comm); char** argv = kvm_getargv(kd, kproc, 0); if (!argv || !argv[0]) { Process_updateCmdline(proc, kproc->ki_comm, 0, strlen(kproc->ki_comm)); return; } size_t len = 0; for (int i = 0; argv[i]; i++) { len += strlen(argv[i]) + 1; } char* cmdline = xMalloc(len); char* at = cmdline; int end = 0; for (int i = 0; argv[i]; i++) { at = stpcpy(at, argv[i]); if (end == 0) { end = at - cmdline; } *at++ = ' '; } at--; *at = '\0'; Process_updateCmdline(proc, cmdline, 0, end); } static char* FreeBSDProcessList_readJailName(const struct kinfo_proc* kproc) { if (kproc->ki_jid == 0) return xStrdup("-"); char jnamebuf[MAXHOSTNAMELEN] = {0}; struct iovec jiov[4]; IGNORE_WCASTQUAL_BEGIN *(const void**)&jiov[0].iov_base = "jid"; jiov[0].iov_len = sizeof("jid"); jiov[1].iov_base = (void*) &kproc->ki_jid; jiov[1].iov_len = sizeof(kproc->ki_jid); *(const void**)&jiov[2].iov_base = "name"; jiov[2].iov_len = sizeof("name"); jiov[3].iov_base = jnamebuf; jiov[3].iov_len = sizeof(jnamebuf); IGNORE_WCASTQUAL_END int jid = jail_get(jiov, 4, 0); if (jid == kproc->ki_jid) return xStrdup(jnamebuf); return NULL; } void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) { FreeBSDProcessList* fpl = (FreeBSDProcessList*) super; const Settings* settings = super->settings; bool hideKernelThreads = settings->hideKernelThreads; bool hideUserlandThreads = settings->hideUserlandThreads; openzfs_sysctl_updateArcStats(&fpl->zfs); FreeBSDProcessList_scanMemoryInfo(super); FreeBSDProcessList_scanCPU(super); // in pause mode only gather global data for meters (CPU/memory/...) if (pauseProcessUpdate) { return; } int count = 0; const struct kinfo_proc* kprocs = kvm_getprocs(fpl->kd, KERN_PROC_PROC, 0, &count); for (int i = 0; i < count; i++) { const struct kinfo_proc* kproc = &kprocs[i]; bool preExisting = false; Process* proc = ProcessList_getProcess(super, kproc->ki_pid, &preExisting, FreeBSDProcess_new); FreeBSDProcess* fp = (FreeBSDProcess*) proc; proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc))); if (!preExisting) { fp->jid = kproc->ki_jid; proc->pid = kproc->ki_pid; proc->isKernelThread = kproc->ki_pid != 0 && kproc->ki_pid != 1 && (kproc->ki_flag & P_SYSTEM); proc->isUserlandThread = false; proc->ppid = kproc->ki_ppid; proc->tpgid = kproc->ki_tpgid; proc->tgid = kproc->ki_pid; proc->session = kproc->ki_sid; proc->pgrp = kproc->ki_pgid; proc->st_uid = kproc->ki_uid; proc->starttime_ctime = kproc->ki_start.tv_sec; Process_fillStarttimeBuffer(proc); proc->user = UsersTable_getRef(super->usersTable, proc->st_uid); ProcessList_add(super, proc); FreeBSDProcessList_updateExe(kproc, proc); FreeBSDProcessList_updateProcessName(fpl->kd, kproc, proc); if (settings->flags & PROCESS_FLAG_CWD) { FreeBSDProcessList_updateCwd(kproc, proc); } fp->jname = FreeBSDProcessList_readJailName(kproc); proc->tty_nr = kproc->ki_tdev; const char* name = (kproc->ki_tdev != NODEV) ? devname(kproc->ki_tdev, S_IFCHR) : NULL; if (!name) { free(proc->tty_name); proc->tty_name = NULL; } else { free_and_xStrdup(&proc->tty_name, name); } } else { if (fp->jid != kproc->ki_jid) { // process can enter jail anytime fp->jid = kproc->ki_jid; free(fp->jname); fp->jname = FreeBSDProcessList_readJailName(kproc); } // if there are reapers in the system, process can get reparented anytime proc->ppid = kproc->ki_ppid; if (proc->st_uid != kproc->ki_uid) { // some processes change users (eg. to lower privs) proc->st_uid = kproc->ki_uid; proc->user = UsersTable_getRef(super->usersTable, proc->st_uid); } if (settings->updateProcessNames) { FreeBSDProcessList_updateProcessName(fpl->kd, kproc, proc); } } // from FreeBSD source /src/usr.bin/top/machine.c proc->m_virt = kproc->ki_size / ONE_K; proc->m_resident = kproc->ki_rssize * pageSizeKb; proc->nlwp = kproc->ki_numthreads; proc->time = (kproc->ki_runtime + 5000) / 10000; proc->percent_cpu = 100.0 * ((double)kproc->ki_pctcpu / (double)kernelFScale); proc->percent_mem = 100.0 * proc->m_resident / (double)(super->totalMem); if (kproc->ki_stat == SRUN && kproc->ki_oncpu != NOCPU) { proc->processor = kproc->ki_oncpu; } else { proc->processor = kproc->ki_lastcpu; } proc->majflt = kproc->ki_cow; proc->priority = kproc->ki_pri.pri_level - PZERO; if (String_eq("intr", kproc->ki_comm) && (kproc->ki_flag & P_SYSTEM)) { proc->nice = 0; //@etosan: intr kernel process (not thread) has weird nice value } else if (kproc->ki_pri.pri_class == PRI_TIMESHARE) { proc->nice = kproc->ki_nice - NZERO; } else if (PRI_IS_REALTIME(kproc->ki_pri.pri_class)) { proc->nice = PRIO_MIN - 1 - (PRI_MAX_REALTIME - kproc->ki_pri.pri_level); } else { proc->nice = PRIO_MAX + 1 + kproc->ki_pri.pri_level - PRI_MIN_IDLE; } switch (kproc->ki_stat) { case SIDL: proc->state = 'I'; break; case SRUN: proc->state = 'R'; break; case SSLEEP: proc->state = 'S'; break; case SSTOP: proc->state = 'T'; break; case SZOMB: proc->state = 'Z'; break; case SWAIT: proc->state = 'D'; break; case SLOCK: proc->state = 'L'; break; default: proc->state = '?'; } if (Process_isKernelThread(proc)) super->kernelThreads++; super->totalTasks++; if (proc->state == 'R') super->runningTasks++; proc->updated = true; } } bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) { assert(id < super->existingCPUs); // TODO: support offline CPUs and hot swapping (void) super; (void) id; return true; }