htop/Process.c

707 lines
24 KiB
C

/*
htop - Process.c
(C) 2004-2015 Hisham H. Muhammad
(C) 2020 Red Hat, Inc. All Rights Reserved.
Released under the GNU GPLv2, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "Process.h"
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <sys/resource.h>
#include "CRT.h"
#include "Macros.h"
#include "Platform.h"
#include "ProcessList.h"
#include "RichString.h"
#include "Settings.h"
#include "XUtils.h"
#if defined(MAJOR_IN_MKDEV)
#include <sys/mkdev.h>
#elif defined(MAJOR_IN_SYSMACROS)
#include <sys/sysmacros.h>
#endif
static uid_t Process_getuid = (uid_t)-1;
int Process_pidDigits = 7;
void Process_setupColumnWidths() {
int maxPid = Platform_getMaxPid();
if (maxPid == -1)
return;
Process_pidDigits = ceil(log10(maxPid));
assert(Process_pidDigits <= PROCESS_MAX_PID_DIGITS);
}
void Process_printBytes(RichString* str, unsigned long long number, bool coloring) {
char buffer[16];
int len;
int largeNumberColor = coloring ? CRT_colors[LARGE_NUMBER] : CRT_colors[PROCESS];
int processMegabytesColor = coloring ? CRT_colors[PROCESS_MEGABYTES] : CRT_colors[PROCESS];
int processGigabytesColor = coloring ? CRT_colors[PROCESS_GIGABYTES] : CRT_colors[PROCESS];
int shadowColor = coloring ? CRT_colors[PROCESS_SHADOW] : CRT_colors[PROCESS];
int processColor = CRT_colors[PROCESS];
if (number == ULLONG_MAX) {
//Invalid number
RichString_appendAscii(str, shadowColor, " N/A ");
return;
}
number /= ONE_K;
if (number < 1000) {
//Plain number, no markings
len = xSnprintf(buffer, sizeof(buffer), "%5llu ", number);
RichString_appendnAscii(str, processColor, buffer, len);
} else if (number < 100000) {
//2 digit MB, 3 digit KB
len = xSnprintf(buffer, sizeof(buffer), "%2llu", number/1000);
RichString_appendnAscii(str, processMegabytesColor, buffer, len);
number %= 1000;
len = xSnprintf(buffer, sizeof(buffer), "%03llu ", number);
RichString_appendnAscii(str, processColor, buffer, len);
} else if (number < 1000 * ONE_K) {
//3 digit MB
number /= ONE_K;
len = xSnprintf(buffer, sizeof(buffer), "%4lluM ", number);
RichString_appendnAscii(str, processMegabytesColor, buffer, len);
} else if (number < 10000 * ONE_K) {
//1 digit GB, 3 digit MB
number /= ONE_K;
len = xSnprintf(buffer, sizeof(buffer), "%1llu", number/1000);
RichString_appendnAscii(str, processGigabytesColor, buffer, len);
number %= 1000;
len = xSnprintf(buffer, sizeof(buffer), "%03lluM ", number);
RichString_appendnAscii(str, processMegabytesColor, buffer, len);
} else if (number < 100000 * ONE_K) {
//2 digit GB, 1 digit MB
number /= 100 * ONE_K;
len = xSnprintf(buffer, sizeof(buffer), "%2llu", number/10);
RichString_appendnAscii(str, processGigabytesColor, buffer, len);
number %= 10;
len = xSnprintf(buffer, sizeof(buffer), ".%1llu", number);
RichString_appendnAscii(str, processMegabytesColor, buffer, len);
RichString_appendAscii(str, processGigabytesColor, "G ");
} else if (number < 1000 * ONE_M) {
//3 digit GB
number /= ONE_M;
len = xSnprintf(buffer, sizeof(buffer), "%4lluG ", number);
RichString_appendnAscii(str, processGigabytesColor, buffer, len);
} else if (number < 10000ULL * ONE_M) {
//1 digit TB, 3 digit GB
number /= ONE_M;
len = xSnprintf(buffer, sizeof(buffer), "%1llu", number/1000);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
number %= 1000;
len = xSnprintf(buffer, sizeof(buffer), "%03lluG ", number);
RichString_appendnAscii(str, processGigabytesColor, buffer, len);
} else if (number < 100000 * ONE_M) {
//2 digit TB, 1 digit GB
number /= 100 * ONE_M;
len = xSnprintf(buffer, sizeof(buffer), "%2llu", number/10);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
number %= 10;
len = xSnprintf(buffer, sizeof(buffer), ".%1llu", number);
RichString_appendnAscii(str, processGigabytesColor, buffer, len);
RichString_appendAscii(str, largeNumberColor, "T ");
} else if (number < 10000ULL * ONE_G) {
//3 digit TB or 1 digit PB, 3 digit TB
number /= ONE_G;
len = xSnprintf(buffer, sizeof(buffer), "%4lluT ", number);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
} else {
//2 digit PB and above
len = xSnprintf(buffer, sizeof(buffer), "%4.1lfP ", (double)number/ONE_T);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
}
}
void Process_printKBytes(RichString* str, unsigned long long number, bool coloring) {
if (number == ULLONG_MAX)
Process_printBytes(str, ULLONG_MAX, coloring);
else
Process_printBytes(str, number * ONE_K, coloring);
}
void Process_printCount(RichString* str, unsigned long long number, bool coloring) {
char buffer[13];
int largeNumberColor = coloring ? CRT_colors[LARGE_NUMBER] : CRT_colors[PROCESS];
int processMegabytesColor = coloring ? CRT_colors[PROCESS_MEGABYTES] : CRT_colors[PROCESS];
int processColor = CRT_colors[PROCESS];
int processShadowColor = coloring ? CRT_colors[PROCESS_SHADOW] : CRT_colors[PROCESS];
if (number == ULLONG_MAX) {
RichString_appendAscii(str, CRT_colors[PROCESS_SHADOW], " N/A ");
} else if (number >= 100000LL * ONE_DECIMAL_T) {
xSnprintf(buffer, sizeof(buffer), "%11llu ", number / ONE_DECIMAL_G);
RichString_appendnAscii(str, largeNumberColor, buffer, 12);
} else if (number >= 100LL * ONE_DECIMAL_T) {
xSnprintf(buffer, sizeof(buffer), "%11llu ", number / ONE_DECIMAL_M);
RichString_appendnAscii(str, largeNumberColor, buffer, 8);
RichString_appendnAscii(str, processMegabytesColor, buffer+8, 4);
} else if (number >= 10LL * ONE_DECIMAL_G) {
xSnprintf(buffer, sizeof(buffer), "%11llu ", number / ONE_DECIMAL_K);
RichString_appendnAscii(str, largeNumberColor, buffer, 5);
RichString_appendnAscii(str, processMegabytesColor, buffer+5, 3);
RichString_appendnAscii(str, processColor, buffer+8, 4);
} else {
xSnprintf(buffer, sizeof(buffer), "%11llu ", number);
RichString_appendnAscii(str, largeNumberColor, buffer, 2);
RichString_appendnAscii(str, processMegabytesColor, buffer+2, 3);
RichString_appendnAscii(str, processColor, buffer+5, 3);
RichString_appendnAscii(str, processShadowColor, buffer+8, 4);
}
}
void Process_printTime(RichString* str, unsigned long long totalHundredths, bool coloring) {
char buffer[10];
int len;
unsigned long long totalSeconds = totalHundredths / 100;
unsigned long long hours = totalSeconds / 3600;
unsigned long long days = totalSeconds / 86400;
int minutes = (totalSeconds / 60) % 60;
int seconds = totalSeconds % 60;
int hundredths = totalHundredths - (totalSeconds * 100);
int yearColor = coloring ? CRT_colors[LARGE_NUMBER] : CRT_colors[PROCESS];
int dayColor = coloring ? CRT_colors[PROCESS_GIGABYTES] : CRT_colors[PROCESS];
int hourColor = coloring ? CRT_colors[PROCESS_MEGABYTES] : CRT_colors[PROCESS];
int defColor = CRT_colors[PROCESS];
if (days >= /* Ignore leapyears */365) {
int years = days / 365;
int daysLeft = days - 365 * years;
if (daysLeft >= 100) {
len = xSnprintf(buffer, sizeof(buffer), "%3dy", years);
RichString_appendnAscii(str, yearColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%3dd ", daysLeft);
RichString_appendnAscii(str, dayColor, buffer, len);
} else if (daysLeft >= 10) {
len = xSnprintf(buffer, sizeof(buffer), "%4dy", years);
RichString_appendnAscii(str, yearColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%2dd ", daysLeft);
RichString_appendnAscii(str, dayColor, buffer, len);
} else {
len = xSnprintf(buffer, sizeof(buffer), "%5dy", years);
RichString_appendnAscii(str, yearColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%1dd ", daysLeft);
RichString_appendnAscii(str, dayColor, buffer, len);
}
} else if (days >= 100) {
int hoursLeft = hours - days * 24;
if (hoursLeft >= 10) {
len = xSnprintf(buffer, sizeof(buffer), "%4llud", days);
RichString_appendnAscii(str, dayColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%2dh ", hoursLeft);
RichString_appendnAscii(str, hourColor, buffer, len);
} else {
len = xSnprintf(buffer, sizeof(buffer), "%5llud", days);
RichString_appendnAscii(str, dayColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%1dh ", hoursLeft);
RichString_appendnAscii(str, hourColor, buffer, len);
}
} else if (hours >= 100) {
int minutesLeft = totalSeconds / 60 - hours * 60;
if (minutesLeft >= 10) {
len = xSnprintf(buffer, sizeof(buffer), "%4lluh", hours);
RichString_appendnAscii(str, hourColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%2dm ", minutesLeft);
RichString_appendnAscii(str, defColor, buffer, len);
} else {
len = xSnprintf(buffer, sizeof(buffer), "%5lluh", hours);
RichString_appendnAscii(str, hourColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%1dm ", minutesLeft);
RichString_appendnAscii(str, defColor, buffer, len);
}
} else if (hours > 0) {
len = xSnprintf(buffer, sizeof(buffer), "%2lluh", hours);
RichString_appendnAscii(str, hourColor, buffer, len);
len = xSnprintf(buffer, sizeof(buffer), "%02d:%02d ", minutes, seconds);
RichString_appendnAscii(str, defColor, buffer, len);
} else {
len = xSnprintf(buffer, sizeof(buffer), "%2d:%02d.%02d ", minutes, seconds, hundredths);
RichString_appendnAscii(str, defColor, buffer, len);
}
}
void Process_fillStarttimeBuffer(Process* this) {
struct tm date;
(void) localtime_r(&this->starttime_ctime, &date);
strftime(this->starttime_show, sizeof(this->starttime_show) - 1, (this->starttime_ctime > (time(NULL) - 86400)) ? "%R " : "%b%d ", &date);
}
static inline void Process_writeCommand(const Process* this, int attr, int baseattr, RichString* str) {
int start = RichString_size(str);
int len = 0;
const char* comm = this->comm;
if (this->settings->highlightBaseName || !this->settings->showProgramPath) {
int basename = 0;
for (int i = 0; i < this->basenameOffset; i++) {
if (comm[i] == '/') {
basename = i + 1;
} else if (comm[i] == ':') {
len = i + 1;
break;
}
}
if (len == 0) {
if (this->settings->showProgramPath) {
start += basename;
} else {
comm += basename;
}
len = this->basenameOffset - basename;
}
}
RichString_appendWide(str, attr, comm);
if (this->settings->highlightBaseName) {
RichString_setAttrn(str, baseattr, start, len);
}
}
void Process_printRate(RichString* str, double rate, bool coloring) {
char buffer[16];
int largeNumberColor = CRT_colors[LARGE_NUMBER];
int processMegabytesColor = CRT_colors[PROCESS_MEGABYTES];
int processColor = CRT_colors[PROCESS];
int shadowColor = CRT_colors[PROCESS_SHADOW];
if (!coloring) {
largeNumberColor = CRT_colors[PROCESS];
processMegabytesColor = CRT_colors[PROCESS];
}
if (isnan(rate)) {
RichString_appendAscii(str, shadowColor, " N/A ");
} else if (rate < 0.005) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f B/s ", rate);
RichString_appendnAscii(str, shadowColor, buffer, len);
} else if (rate < ONE_K) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f B/s ", rate);
RichString_appendnAscii(str, processColor, buffer, len);
} else if (rate < ONE_M) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f K/s ", rate / ONE_K);
RichString_appendnAscii(str, processColor, buffer, len);
} else if (rate < ONE_G) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f M/s ", rate / ONE_M);
RichString_appendnAscii(str, processMegabytesColor, buffer, len);
} else if (rate < ONE_T) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f G/s ", rate / ONE_G);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
} else if (rate < ONE_P) {
int len = snprintf(buffer, sizeof(buffer), "%7.2f T/s ", rate / ONE_T);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
} else {
int len = snprintf(buffer, sizeof(buffer), "%7.2f P/s ", rate / ONE_P);
RichString_appendnAscii(str, largeNumberColor, buffer, len);
}
}
void Process_printLeftAlignedField(RichString* str, int attr, const char* content, unsigned int width) {
int columns = width;
RichString_appendnWideColumns(str, attr, content, strlen(content), &columns);
RichString_appendChr(str, attr, ' ', width + 1 - columns);
}
void Process_writeField(const Process* this, RichString* str, ProcessField field) {
char buffer[256];
size_t n = sizeof(buffer);
int attr = CRT_colors[DEFAULT_COLOR];
bool coloring = this->settings->highlightMegabytes;
switch (field) {
case COMM: {
int baseattr = CRT_colors[PROCESS_BASENAME];
if (this->settings->highlightThreads && Process_isThread(this)) {
attr = CRT_colors[PROCESS_THREAD];
baseattr = CRT_colors[PROCESS_THREAD_BASENAME];
}
if (!this->settings->treeView || this->indent == 0) {
Process_writeCommand(this, attr, baseattr, str);
return;
}
char* buf = buffer;
int maxIndent = 0;
bool lastItem = (this->indent < 0);
int indent = (this->indent < 0 ? -this->indent : this->indent);
for (int i = 0; i < 32; i++) {
if (indent & (1U << i)) {
maxIndent = i+1;
}
}
for (int i = 0; i < maxIndent - 1; i++) {
int written, ret;
if (indent & (1 << i)) {
ret = xSnprintf(buf, n, "%s ", CRT_treeStr[TREE_STR_VERT]);
} else {
ret = xSnprintf(buf, n, " ");
}
if (ret < 0 || (size_t)ret >= n) {
written = n;
} else {
written = ret;
}
buf += written;
n -= written;
}
const char* draw = CRT_treeStr[lastItem ? TREE_STR_BEND : TREE_STR_RTEE];
xSnprintf(buf, n, "%s%s ", draw, this->showChildren ? CRT_treeStr[TREE_STR_SHUT] : CRT_treeStr[TREE_STR_OPEN] );
RichString_appendWide(str, CRT_colors[PROCESS_TREE], buffer);
Process_writeCommand(this, attr, baseattr, str);
return;
}
case MAJFLT: Process_printCount(str, this->majflt, coloring); return;
case MINFLT: Process_printCount(str, this->minflt, coloring); return;
case M_RESIDENT: Process_printKBytes(str, this->m_resident, coloring); return;
case M_VIRT: Process_printKBytes(str, this->m_virt, coloring); return;
case NICE:
xSnprintf(buffer, n, "%3ld ", this->nice);
attr = this->nice < 0 ? CRT_colors[PROCESS_HIGH_PRIORITY]
: this->nice > 0 ? CRT_colors[PROCESS_LOW_PRIORITY]
: CRT_colors[PROCESS_SHADOW];
break;
case NLWP:
if (this->nlwp == 1)
attr = CRT_colors[PROCESS_SHADOW];
xSnprintf(buffer, n, "%4ld ", this->nlwp);
break;
case PERCENT_CPU:
case PERCENT_NORM_CPU: {
float cpuPercentage = this->percent_cpu;
if (field == PERCENT_NORM_CPU) {
cpuPercentage /= this->processList->cpuCount;
}
if (cpuPercentage > 999.9F) {
xSnprintf(buffer, n, "%4u ", (unsigned int)cpuPercentage);
} else if (cpuPercentage > 99.9F) {
xSnprintf(buffer, n, "%3u. ", (unsigned int)cpuPercentage);
} else {
if (cpuPercentage < 0.05F)
attr = CRT_colors[PROCESS_SHADOW];
xSnprintf(buffer, n, "%4.1f ", cpuPercentage);
}
break;
}
case PERCENT_MEM:
if (this->percent_mem > 99.9F) {
xSnprintf(buffer, n, "100. ");
} else {
if (this->percent_mem < 0.05F)
attr = CRT_colors[PROCESS_SHADOW];
xSnprintf(buffer, n, "%4.1f ", this->percent_mem);
}
break;
case PGRP: xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->pgrp); break;
case PID: xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->pid); break;
case PPID: xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->ppid); break;
case PRIORITY:
if (this->priority <= -100)
xSnprintf(buffer, n, " RT ");
else
xSnprintf(buffer, n, "%3ld ", this->priority);
break;
case PROCESSOR: xSnprintf(buffer, n, "%3d ", Settings_cpuId(this->settings, this->processor)); break;
case SESSION: xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->session); break;
case STARTTIME: xSnprintf(buffer, n, "%s", this->starttime_show); break;
case STATE:
xSnprintf(buffer, n, "%c ", this->state);
switch (this->state) {
case 'R':
attr = CRT_colors[PROCESS_R_STATE];
break;
case 'D':
attr = CRT_colors[PROCESS_D_STATE];
break;
case 'I':
case 'S':
attr = CRT_colors[PROCESS_SHADOW];
break;
}
break;
case ST_UID: xSnprintf(buffer, n, "%5d ", this->st_uid); break;
case TIME: Process_printTime(str, this->time, coloring); return;
case TGID:
if (this->tgid == this->pid)
attr = CRT_colors[PROCESS_SHADOW];
xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->tgid);
break;
case TPGID: xSnprintf(buffer, n, "%*d ", Process_pidDigits, this->tpgid); break;
case TTY:
if (!this->tty_name) {
attr = CRT_colors[PROCESS_SHADOW];
xSnprintf(buffer, n, "(no tty) ");
} else {
const char* name = String_startsWith(this->tty_name, "/dev/") ? (this->tty_name + strlen("/dev/")) : this->tty_name;
xSnprintf(buffer, n, "%-8s ", name);
}
break;
case USER:
if (Process_getuid != this->st_uid)
attr = CRT_colors[PROCESS_SHADOW];
if (this->user) {
Process_printLeftAlignedField(str, attr, this->user, 9);
return;
}
xSnprintf(buffer, n, "%-9d ", this->st_uid);
break;
default:
assert(0 && "Process_writeField: default key reached"); /* should never be reached */
xSnprintf(buffer, n, "- ");
}
RichString_appendAscii(str, attr, buffer);
}
void Process_display(const Object* cast, RichString* out) {
const Process* this = (const Process*) cast;
const ProcessField* fields = this->settings->fields;
for (int i = 0; fields[i]; i++)
As_Process(this)->writeField(this, out, fields[i]);
if (this->settings->shadowOtherUsers && this->st_uid != Process_getuid) {
RichString_setAttr(out, CRT_colors[PROCESS_SHADOW]);
}
if (this->tag == true) {
RichString_setAttr(out, CRT_colors[PROCESS_TAG]);
}
if (this->settings->highlightChanges) {
if (Process_isTomb(this)) {
out->highlightAttr = CRT_colors[PROCESS_TOMB];
} else if (Process_isNew(this)) {
out->highlightAttr = CRT_colors[PROCESS_NEW];
}
}
assert(RichString_size(out) > 0);
}
void Process_done(Process* this) {
assert (this != NULL);
free(this->comm);
free(this->tty_name);
}
static const char* Process_getCommandStr(const Process* p) {
return p->comm ? p->comm : "";
}
const ProcessClass Process_class = {
.super = {
.extends = Class(Object),
.display = Process_display,
.delete = Process_delete,
.compare = Process_compare
},
.writeField = Process_writeField,
.getCommandStr = Process_getCommandStr,
};
void Process_init(Process* this, const Settings* settings) {
this->settings = settings;
this->tag = false;
this->showChildren = true;
this->show = true;
this->updated = false;
this->basenameOffset = -1;
if (Process_getuid == (uid_t)-1) {
Process_getuid = getuid();
}
}
void Process_toggleTag(Process* this) {
this->tag = !this->tag;
}
bool Process_isNew(const Process* this) {
assert(this->processList);
if (this->processList->monotonicMs >= this->seenStampMs) {
return this->processList->monotonicMs - this->seenStampMs <= 1000 * (uint64_t)this->processList->settings->highlightDelaySecs;
}
return false;
}
bool Process_isTomb(const Process* this) {
return this->tombStampMs > 0;
}
bool Process_setPriority(Process* this, int priority) {
if (Settings_isReadonly())
return false;
int old_prio = getpriority(PRIO_PROCESS, this->pid);
int err = setpriority(PRIO_PROCESS, this->pid, priority);
if (err == 0 && old_prio != getpriority(PRIO_PROCESS, this->pid)) {
this->nice = priority;
}
return (err == 0);
}
bool Process_changePriorityBy(Process* this, Arg delta) {
return Process_setPriority(this, this->nice + delta.i);
}
bool Process_sendSignal(Process* this, Arg sgn) {
return kill(this->pid, sgn.i) == 0;
}
int Process_pidCompare(const void* v1, const void* v2) {
const Process* p1 = (const Process*)v1;
const Process* p2 = (const Process*)v2;
return SPACESHIP_NUMBER(p1->pid, p2->pid);
}
int Process_compare(const void* v1, const void* v2) {
const Process *p1 = (const Process*)v1;
const Process *p2 = (const Process*)v2;
const Settings *settings = p1->settings;
ProcessField key = Settings_getActiveSortKey(settings);
int result = Process_compareByKey(p1, p2, key);
// Implement tie-breaker (needed to make tree mode more stable)
if (!result)
return SPACESHIP_NUMBER(p1->pid, p2->pid);
return (Settings_getActiveDirection(settings) == 1) ? result : -result;
}
static uint8_t stateCompareValue(char state) {
switch (state) {
case 'S':
return 10;
case 'I':
return 9;
case 'X':
return 8;
case 'Z':
return 7;
case 't':
return 6;
case 'T':
return 5;
case 'L':
return 4;
case 'D':
return 3;
case 'R':
return 2;
case '?':
return 1;
default:
return 0;
}
}
int Process_compareByKey_Base(const Process* p1, const Process* p2, ProcessField key) {
int r;
switch (key) {
case PERCENT_CPU:
case PERCENT_NORM_CPU:
return SPACESHIP_NUMBER(p1->percent_cpu, p2->percent_cpu);
case PERCENT_MEM:
return SPACESHIP_NUMBER(p1->m_resident, p2->m_resident);
case COMM:
return SPACESHIP_NULLSTR(Process_getCommand(p1), Process_getCommand(p2));
case MAJFLT:
return SPACESHIP_NUMBER(p1->majflt, p2->majflt);
case MINFLT:
return SPACESHIP_NUMBER(p1->minflt, p2->minflt);
case M_RESIDENT:
return SPACESHIP_NUMBER(p1->m_resident, p2->m_resident);
case M_VIRT:
return SPACESHIP_NUMBER(p1->m_virt, p2->m_virt);
case NICE:
return SPACESHIP_NUMBER(p1->nice, p2->nice);
case NLWP:
return SPACESHIP_NUMBER(p1->nlwp, p2->nlwp);
case PGRP:
return SPACESHIP_NUMBER(p1->pgrp, p2->pgrp);
case PID:
return SPACESHIP_NUMBER(p1->pid, p2->pid);
case PPID:
return SPACESHIP_NUMBER(p1->ppid, p2->ppid);
case PRIORITY:
return SPACESHIP_NUMBER(p1->priority, p2->priority);
case PROCESSOR:
return SPACESHIP_NUMBER(p1->processor, p2->processor);
case SESSION:
return SPACESHIP_NUMBER(p1->session, p2->session);
case STARTTIME:
r = SPACESHIP_NUMBER(p1->starttime_ctime, p2->starttime_ctime);
return r != 0 ? r : SPACESHIP_NUMBER(p1->pid, p2->pid);
case STATE:
return SPACESHIP_NUMBER(stateCompareValue(p1->state), stateCompareValue(p2->state));
case ST_UID:
return SPACESHIP_NUMBER(p1->st_uid, p2->st_uid);
case TIME:
return SPACESHIP_NUMBER(p1->time, p2->time);
case TGID:
return SPACESHIP_NUMBER(p1->tgid, p2->tgid);
case TPGID:
return SPACESHIP_NUMBER(p1->tpgid, p2->tpgid);
case TTY:
/* Order no tty last */
return SPACESHIP_DEFAULTSTR(p1->tty_name, p2->tty_name, "\x7F");
case USER:
return SPACESHIP_NULLSTR(p1->user, p2->user);
default:
assert(0 && "Process_compareByKey_Base: default key reached"); /* should never be reached */
return SPACESHIP_NUMBER(p1->pid, p2->pid);
}
}