htop/linux/LinuxProcessList.c

1979 lines
59 KiB
C

/*
htop - LinuxProcessList.c
(C) 2014 Hisham H. Muhammad
Released under the GNU GPLv2, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "linux/LinuxProcessList.h"
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#ifdef HAVE_DELAYACCT
#include <linux/netlink.h>
#include <linux/taskstats.h>
#include <netlink/attr.h>
#include <netlink/handlers.h>
#include <netlink/msg.h>
#include <netlink/netlink.h>
#include <netlink/socket.h>
#include <netlink/genl/genl.h>
#include <netlink/genl/ctrl.h>
#endif
#include "Compat.h"
#include "CRT.h"
#include "Macros.h"
#include "Object.h"
#include "Process.h"
#include "Settings.h"
#include "XUtils.h"
#include "linux/LinuxProcess.h"
#include "linux/Platform.h" // needed for GNU/hurd to get PATH_MAX
#if defined(MAJOR_IN_MKDEV)
#include <sys/mkdev.h>
#elif defined(MAJOR_IN_SYSMACROS)
#include <sys/sysmacros.h>
#endif
#ifdef HAVE_SENSORS_SENSORS_H
#include "LibSensors.h"
#endif
// CentOS 6's kernel doesn't provide a definition of O_PATH
// based on definition taken from uapi/asm-generic/fcnth.h in Linux kernel tree
#ifndef O_PATH
# define O_PATH 010000000
#endif
static long long btime = -1;
static long jiffy;
static FILE* fopenat(openat_arg_t openatArg, const char* pathname, const char* mode) {
assert(String_eq(mode, "r")); /* only currently supported mode */
int fd = Compat_openat(openatArg, pathname, O_RDONLY);
if (fd < 0)
return NULL;
FILE* stream = fdopen(fd, mode);
if (!stream)
close(fd);
return stream;
}
static int sortTtyDrivers(const void* va, const void* vb) {
const TtyDriver* a = (const TtyDriver*) va;
const TtyDriver* b = (const TtyDriver*) vb;
int r = SPACESHIP_NUMBER(a->major, b->major);
if (r)
return r;
return SPACESHIP_NUMBER(a->minorFrom, b->minorFrom);
}
static void LinuxProcessList_initTtyDrivers(LinuxProcessList* this) {
TtyDriver* ttyDrivers;
char buf[16384];
ssize_t r = xReadfile(PROCTTYDRIVERSFILE, buf, sizeof(buf));
if (r < 0)
return;
int numDrivers = 0;
int allocd = 10;
ttyDrivers = xMallocArray(allocd, sizeof(TtyDriver));
char* at = buf;
while (*at != '\0') {
at = strchr(at, ' '); // skip first token
while (*at == ' ') at++; // skip spaces
const char* token = at; // mark beginning of path
at = strchr(at, ' '); // find end of path
*at = '\0'; at++; // clear and skip
ttyDrivers[numDrivers].path = xStrdup(token); // save
while (*at == ' ') at++; // skip spaces
token = at; // mark beginning of major
at = strchr(at, ' '); // find end of major
*at = '\0'; at++; // clear and skip
ttyDrivers[numDrivers].major = atoi(token); // save
while (*at == ' ') at++; // skip spaces
token = at; // mark beginning of minorFrom
while (*at >= '0' && *at <= '9') at++; //find end of minorFrom
if (*at == '-') { // if has range
*at = '\0'; at++; // clear and skip
ttyDrivers[numDrivers].minorFrom = atoi(token); // save
token = at; // mark beginning of minorTo
at = strchr(at, ' '); // find end of minorTo
*at = '\0'; at++; // clear and skip
ttyDrivers[numDrivers].minorTo = atoi(token); // save
} else { // no range
*at = '\0'; at++; // clear and skip
ttyDrivers[numDrivers].minorFrom = atoi(token); // save
ttyDrivers[numDrivers].minorTo = atoi(token); // save
}
at = strchr(at, '\n'); // go to end of line
at++; // skip
numDrivers++;
if (numDrivers == allocd) {
allocd += 10;
ttyDrivers = xReallocArray(ttyDrivers, allocd, sizeof(TtyDriver));
}
}
numDrivers++;
ttyDrivers = xRealloc(ttyDrivers, sizeof(TtyDriver) * numDrivers);
ttyDrivers[numDrivers - 1].path = NULL;
qsort(ttyDrivers, numDrivers - 1, sizeof(TtyDriver), sortTtyDrivers);
this->ttyDrivers = ttyDrivers;
}
#ifdef HAVE_DELAYACCT
static void LinuxProcessList_initNetlinkSocket(LinuxProcessList* this) {
this->netlink_socket = nl_socket_alloc();
if (this->netlink_socket == NULL) {
return;
}
if (nl_connect(this->netlink_socket, NETLINK_GENERIC) < 0) {
return;
}
this->netlink_family = genl_ctrl_resolve(this->netlink_socket, TASKSTATS_GENL_NAME);
}
#endif
static void LinuxProcessList_updateCPUcount(ProcessList* super, FILE* stream) {
LinuxProcessList* this = (LinuxProcessList*) super;
unsigned int cpus = 0;
char buffer[PROC_LINE_LENGTH + 1];
while (fgets(buffer, sizeof(buffer), stream)) {
if (String_startsWith(buffer, "cpu")) {
cpus++;
}
}
if (cpus == 0)
CRT_fatalError("No cpu entry in " PROCSTATFILE);
if (cpus == 1)
CRT_fatalError("No cpu aggregate or cpuN entry in " PROCSTATFILE);
/* Subtract aggregate cpu entry */
cpus--;
if (cpus != super->cpuCount || !this->cpus) {
super->cpuCount = MAXIMUM(cpus, 1);
free(this->cpus);
this->cpus = xCalloc(cpus + 1, sizeof(CPUData));
}
}
ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* pidMatchList, uid_t userId) {
LinuxProcessList* this = xCalloc(1, sizeof(LinuxProcessList));
ProcessList* pl = &(this->super);
ProcessList_init(pl, Class(LinuxProcess), usersTable, pidMatchList, userId);
LinuxProcessList_initTtyDrivers(this);
// Initialize page size
pageSize = sysconf(_SC_PAGESIZE);
if (pageSize == -1)
CRT_fatalError("Cannot get pagesize by sysconf(_SC_PAGESIZE)");
pageSizeKB = pageSize / ONE_K;
// Initialize clock ticks
jiffy = sysconf(_SC_CLK_TCK);
if (jiffy == -1)
CRT_fatalError("Cannot get clock ticks by sysconf(_SC_CLK_TCK)");
// Test /proc/PID/smaps_rollup availability (faster to parse, Linux 4.14+)
this->haveSmapsRollup = (access(PROCDIR "/self/smaps_rollup", R_OK) == 0);
// Read btime (the kernel boot time, as number of seconds since the epoch)
FILE* statfile = fopen(PROCSTATFILE, "r");
if (statfile == NULL)
CRT_fatalError("Cannot open " PROCSTATFILE);
while (true) {
char buffer[PROC_LINE_LENGTH + 1];
if (fgets(buffer, sizeof(buffer), statfile) == NULL)
break;
if (String_startsWith(buffer, "btime ") == false)
continue;
if (sscanf(buffer, "btime %lld\n", &btime) == 1)
break;
CRT_fatalError("Failed to parse btime from " PROCSTATFILE);
}
if (btime == -1)
CRT_fatalError("No btime in " PROCSTATFILE);
rewind(statfile);
// Initialize CPU count
LinuxProcessList_updateCPUcount(pl, statfile);
fclose(statfile);
return pl;
}
void ProcessList_delete(ProcessList* pl) {
LinuxProcessList* this = (LinuxProcessList*) pl;
ProcessList_done(pl);
free(this->cpus);
if (this->ttyDrivers) {
for (int i = 0; this->ttyDrivers[i].path; i++) {
free(this->ttyDrivers[i].path);
}
free(this->ttyDrivers);
}
#ifdef HAVE_DELAYACCT
if (this->netlink_socket) {
nl_close(this->netlink_socket);
nl_socket_free(this->netlink_socket);
}
#endif
free(this);
}
static inline unsigned long long LinuxProcessList_adjustTime(unsigned long long t) {
return t * 100 / jiffy;
}
static bool LinuxProcessList_readStatFile(Process* process, openat_arg_t procFd, char* command, size_t commLen) {
LinuxProcess* lp = (LinuxProcess*) process;
char buf[MAX_READ + 1];
ssize_t r = xReadfileat(procFd, "stat", buf, sizeof(buf));
if (r < 0)
return false;
/* (1) pid - %d */
assert(process->pid == atoi(buf));
char* location = strchr(buf, ' ');
if (!location)
return false;
/* (2) comm - (%s) */
location += 2;
char* end = strrchr(location, ')');
if (!end)
return false;
String_safeStrncpy(command, location, MINIMUM((size_t)(end - location + 1), commLen));
location = end + 2;
/* (3) state - %c */
process->state = location[0];
location += 2;
/* (4) ppid - %d */
process->ppid = strtol(location, &location, 10);
location += 1;
/* (5) pgrp - %d */
process->pgrp = strtol(location, &location, 10);
location += 1;
/* (6) session - %d */
process->session = strtol(location, &location, 10);
location += 1;
/* (7) tty_nr - %d */
process->tty_nr = strtoul(location, &location, 10);
location += 1;
/* (8) tpgid - %d */
process->tpgid = strtol(location, &location, 10);
location += 1;
/* Skip (9) flags - %u */
location = strchr(location, ' ') + 1;
/* (10) minflt - %lu */
process->minflt = strtoull(location, &location, 10);
location += 1;
/* (11) cminflt - %lu */
lp->cminflt = strtoull(location, &location, 10);
location += 1;
/* (12) majflt - %lu */
process->majflt = strtoull(location, &location, 10);
location += 1;
/* (13) cmajflt - %lu */
lp->cmajflt = strtoull(location, &location, 10);
location += 1;
/* (14) utime - %lu */
lp->utime = LinuxProcessList_adjustTime(strtoull(location, &location, 10));
location += 1;
/* (15) stime - %lu */
lp->stime = LinuxProcessList_adjustTime(strtoull(location, &location, 10));
location += 1;
/* (16) cutime - %ld */
lp->cutime = LinuxProcessList_adjustTime(strtoull(location, &location, 10));
location += 1;
/* (17) cstime - %ld */
lp->cstime = LinuxProcessList_adjustTime(strtoull(location, &location, 10));
location += 1;
/* (18) priority - %ld */
process->priority = strtol(location, &location, 10);
location += 1;
/* (19) nice - %ld */
process->nice = strtol(location, &location, 10);
location += 1;
/* (20) num_threads - %ld */
process->nlwp = strtol(location, &location, 10);
location += 1;
/* Skip (21) itrealvalue - %ld */
location = strchr(location, ' ') + 1;
/* (22) starttime - %llu */
if (process->starttime_ctime == 0) {
process->starttime_ctime = btime + LinuxProcessList_adjustTime(strtoll(location, &location, 10)) / 100;
} else {
location = strchr(location, ' ');
}
location += 1;
/* Skip (23) - (38) */
for (int i = 0; i < 16; i++) {
location = strchr(location, ' ') + 1;
}
assert(location != NULL);
/* (39) processor - %d */
process->processor = strtol(location, &location, 10);
/* Ignore further fields */
process->time = lp->utime + lp->stime;
return true;
}
static bool LinuxProcessList_statProcessDir(Process* process, openat_arg_t procFd) {
struct stat sstat;
#ifdef HAVE_OPENAT
int statok = fstat(procFd, &sstat);
#else
int statok = stat(procFd, &sstat);
#endif
if (statok == -1)
return false;
process->st_uid = sstat.st_uid;
return true;
}
static void LinuxProcessList_readIoFile(LinuxProcess* process, openat_arg_t procFd, unsigned long long realtimeMs) {
char buffer[1024];
ssize_t r = xReadfileat(procFd, "io", buffer, sizeof(buffer));
if (r < 0) {
process->io_rate_read_bps = NAN;
process->io_rate_write_bps = NAN;
process->io_rchar = ULLONG_MAX;
process->io_wchar = ULLONG_MAX;
process->io_syscr = ULLONG_MAX;
process->io_syscw = ULLONG_MAX;
process->io_read_bytes = ULLONG_MAX;
process->io_write_bytes = ULLONG_MAX;
process->io_cancelled_write_bytes = ULLONG_MAX;
process->io_last_scan_time_ms = realtimeMs;
return;
}
unsigned long long last_read = process->io_read_bytes;
unsigned long long last_write = process->io_write_bytes;
char* buf = buffer;
const char* line;
while ((line = strsep(&buf, "\n")) != NULL) {
switch (line[0]) {
case 'r':
if (line[1] == 'c' && String_startsWith(line + 2, "har: ")) {
process->io_rchar = strtoull(line + 7, NULL, 10);
} else if (String_startsWith(line + 1, "ead_bytes: ")) {
process->io_read_bytes = strtoull(line + 12, NULL, 10);
process->io_rate_read_bps = (process->io_read_bytes - last_read) * /*ms to s*/1000 / (realtimeMs - process->io_last_scan_time_ms);
}
break;
case 'w':
if (line[1] == 'c' && String_startsWith(line + 2, "har: ")) {
process->io_wchar = strtoull(line + 7, NULL, 10);
} else if (String_startsWith(line + 1, "rite_bytes: ")) {
process->io_write_bytes = strtoull(line + 13, NULL, 10);
process->io_rate_write_bps = (process->io_write_bytes - last_write) * /*ms to s*/1000 / (realtimeMs - process->io_last_scan_time_ms);
}
break;
case 's':
if (line[4] == 'r' && String_startsWith(line + 1, "yscr: ")) {
process->io_syscr = strtoull(line + 7, NULL, 10);
} else if (String_startsWith(line + 1, "yscw: ")) {
process->io_syscw = strtoull(line + 7, NULL, 10);
}
break;
case 'c':
if (String_startsWith(line + 1, "ancelled_write_bytes: ")) {
process->io_cancelled_write_bytes = strtoull(line + 23, NULL, 10);
}
}
}
process->io_last_scan_time_ms = realtimeMs;
}
typedef struct LibraryData_ {
uint64_t size;
bool exec;
} LibraryData;
static inline uint64_t fast_strtoull_dec(char **str, int maxlen) {
register uint64_t result = 0;
if (!maxlen)
--maxlen;
while (maxlen-- && **str >= '0' && **str <= '9') {
result *= 10;
result += **str - '0';
(*str)++;
}
return result;
}
static inline uint64_t fast_strtoull_hex(char **str, int maxlen) {
register uint64_t result = 0;
register int nibble, letter;
const long valid_mask = 0x03FF007E;
if (!maxlen)
--maxlen;
while (maxlen--) {
nibble = (unsigned char)**str;
if (!(valid_mask & (1 << (nibble & 0x1F))))
break;
if ((nibble < '0') || (nibble & ~0x20) > 'F')
break;
letter = (nibble & 0x40) ? 'A' - '9' - 1 : 0;
nibble &=~0x20; // to upper
nibble ^= 0x10; // switch letters and digits
nibble -= letter;
nibble &= 0x0f;
result <<= 4;
result += (uint64_t)nibble;
(*str)++;
}
return result;
}
static void LinuxProcessList_calcLibSize_helper(ATTR_UNUSED ht_key_t key, void* value, void* data) {
if (!data)
return;
if (!value)
return;
const LibraryData* v = (const LibraryData *)value;
uint64_t* d = (uint64_t *)data;
if (!v->exec)
return;
*d += v->size;
}
static uint64_t LinuxProcessList_calcLibSize(openat_arg_t procFd) {
FILE* mapsfile = fopenat(procFd, "maps", "r");
if (!mapsfile)
return 0;
Hashtable* ht = Hashtable_new(64, true);
char buffer[1024];
while (fgets(buffer, sizeof(buffer), mapsfile)) {
uint64_t map_start;
uint64_t map_end;
char map_perm[5];
unsigned int map_devmaj;
unsigned int map_devmin;
uint64_t map_inode;
// Short circuit test: Look for a slash
if (!strchr(buffer, '/'))
continue;
// Parse format: "%Lx-%Lx %4s %x %2x:%2x %Ld"
char *readptr = buffer;
map_start = fast_strtoull_hex(&readptr, 16);
if ('-' != *readptr++)
continue;
map_end = fast_strtoull_hex(&readptr, 16);
if (' ' != *readptr++)
continue;
memcpy(map_perm, readptr, 4);
map_perm[4] = '\0';
readptr += 4;
if (' ' != *readptr++)
continue;
while(*readptr > ' ')
readptr++; // Skip parsing this hex value
if (' ' != *readptr++)
continue;
map_devmaj = fast_strtoull_hex(&readptr, 4);
if (':' != *readptr++)
continue;
map_devmin = fast_strtoull_hex(&readptr, 4);
if (' ' != *readptr++)
continue;
//Minor shortcut: Once we know there's no file for this region, we skip
if (!map_devmaj && !map_devmin)
continue;
map_inode = fast_strtoull_dec(&readptr, 20);
if (!map_inode)
continue;
LibraryData* libdata = Hashtable_get(ht, map_inode);
if (!libdata) {
libdata = xCalloc(1, sizeof(LibraryData));
Hashtable_put(ht, map_inode, libdata);
}
libdata->size += map_end - map_start;
libdata->exec |= 'x' == map_perm[2];
}
fclose(mapsfile);
uint64_t total_size = 0;
Hashtable_foreach(ht, LinuxProcessList_calcLibSize_helper, &total_size);
Hashtable_delete(ht);
return total_size / pageSize;
}
static bool LinuxProcessList_readStatmFile(LinuxProcess* process, openat_arg_t procFd, bool performLookup, unsigned long long realtimeMs) {
FILE* statmfile = fopenat(procFd, "statm", "r");
if (!statmfile)
return false;
long tmp_m_lrs = 0;
int r = fscanf(statmfile, "%ld %ld %ld %ld %ld %ld %ld",
&process->super.m_virt,
&process->super.m_resident,
&process->m_share,
&process->m_trs,
&tmp_m_lrs,
&process->m_drs,
&process->m_dt);
fclose(statmfile);
if (r == 7) {
process->super.m_virt *= pageSizeKB;
process->super.m_resident *= pageSizeKB;
if (tmp_m_lrs) {
process->m_lrs = tmp_m_lrs;
} else if (performLookup) {
// Check if we really should recalculate the M_LRS value for this process
uint64_t passedTimeInMs = realtimeMs - process->last_mlrs_calctime;
uint64_t recheck = ((uint64_t)rand()) % 2048;
if(passedTimeInMs > 2000 || passedTimeInMs > recheck) {
process->last_mlrs_calctime = realtimeMs;
process->m_lrs = LinuxProcessList_calcLibSize(procFd);
}
} else {
// Keep previous value
}
}
return r == 7;
}
static bool LinuxProcessList_readSmapsFile(LinuxProcess* process, openat_arg_t procFd, bool haveSmapsRollup) {
//http://elixir.free-electrons.com/linux/v4.10/source/fs/proc/task_mmu.c#L719
//kernel will return data in chunks of size PAGE_SIZE or less.
FILE* f = fopenat(procFd, haveSmapsRollup ? "smaps_rollup" : "smaps", "r");
if (!f)
return false;
process->m_pss = 0;
process->m_swap = 0;
process->m_psswp = 0;
char buffer[256];
while (fgets(buffer, sizeof(buffer), f)) {
if (!strchr(buffer, '\n')) {
// Partial line, skip to end of this line
while (fgets(buffer, sizeof(buffer), f)) {
if (strchr(buffer, '\n')) {
break;
}
}
continue;
}
if (String_startsWith(buffer, "Pss:")) {
process->m_pss += strtol(buffer + 4, NULL, 10);
} else if (String_startsWith(buffer, "Swap:")) {
process->m_swap += strtol(buffer + 5, NULL, 10);
} else if (String_startsWith(buffer, "SwapPss:")) {
process->m_psswp += strtol(buffer + 8, NULL, 10);
}
}
fclose(f);
return true;
}
#ifdef HAVE_OPENVZ
static void LinuxProcessList_readOpenVZData(LinuxProcess* process, openat_arg_t procFd) {
if (access(PROCDIR "/vz", R_OK) != 0) {
free(process->ctid);
process->ctid = NULL;
process->vpid = process->super.pid;
return;
}
FILE* file = fopenat(procFd, "status", "r");
if (!file) {
free(process->ctid);
process->ctid = NULL;
process->vpid = process->super.pid;
return;
}
bool foundEnvID = false;
bool foundVPid = false;
char linebuf[256];
while (fgets(linebuf, sizeof(linebuf), file) != NULL) {
if (strchr(linebuf, '\n') == NULL) {
// Partial line, skip to end of this line
while (fgets(linebuf, sizeof(linebuf), file) != NULL) {
if (strchr(linebuf, '\n') != NULL) {
break;
}
}
continue;
}
char* name_value_sep = strchr(linebuf, ':');
if (name_value_sep == NULL) {
continue;
}
int field;
if (0 == strncasecmp(linebuf, "envID", name_value_sep - linebuf)) {
field = 1;
} else if (0 == strncasecmp(linebuf, "VPid", name_value_sep - linebuf)) {
field = 2;
} else {
continue;
}
do {
name_value_sep++;
} while (*name_value_sep != '\0' && *name_value_sep <= 32);
char* value_end = name_value_sep;
while(*value_end > 32) {
value_end++;
}
if (name_value_sep == value_end) {
continue;
}
*value_end = '\0';
switch(field) {
case 1:
foundEnvID = true;
if (!String_eq(name_value_sep, process->ctid ? process->ctid : ""))
free_and_xStrdup(&process->ctid, name_value_sep);
break;
case 2:
foundVPid = true;
process->vpid = strtoul(name_value_sep, NULL, 0);
break;
default:
//Sanity Check: Should never reach here, or the implementation is missing something!
assert(false && "OpenVZ handling: Unimplemented case for field handling reached.");
}
}
fclose(file);
if (!foundEnvID) {
free(process->ctid);
process->ctid = NULL;
}
if (!foundVPid) {
process->vpid = process->super.pid;
}
}
#endif
static void LinuxProcessList_readCGroupFile(LinuxProcess* process, openat_arg_t procFd) {
FILE* file = fopenat(procFd, "cgroup", "r");
if (!file) {
if (process->cgroup) {
free(process->cgroup);
process->cgroup = NULL;
}
return;
}
char output[PROC_LINE_LENGTH + 1];
output[0] = '\0';
char* at = output;
int left = PROC_LINE_LENGTH;
while (!feof(file) && left > 0) {
char buffer[PROC_LINE_LENGTH + 1];
const char* ok = fgets(buffer, PROC_LINE_LENGTH, file);
if (!ok)
break;
char* group = strchr(buffer, ':');
if (!group)
break;
if (at != output) {
*at = ';';
at++;
left--;
}
int wrote = snprintf(at, left, "%s", group);
left -= wrote;
}
fclose(file);
free_and_xStrdup(&process->cgroup, output);
}
#ifdef HAVE_VSERVER
static void LinuxProcessList_readVServerData(LinuxProcess* process, openat_arg_t procFd) {
FILE* file = fopenat(procFd, "status", "r");
if (!file)
return;
char buffer[PROC_LINE_LENGTH + 1];
process->vxid = 0;
while (fgets(buffer, PROC_LINE_LENGTH, file)) {
if (String_startsWith(buffer, "VxID:")) {
int vxid;
int ok = sscanf(buffer, "VxID:\t%32d", &vxid);
if (ok >= 1) {
process->vxid = vxid;
}
}
#if defined HAVE_ANCIENT_VSERVER
else if (String_startsWith(buffer, "s_context:")) {
int vxid;
int ok = sscanf(buffer, "s_context:\t%32d", &vxid);
if (ok >= 1) {
process->vxid = vxid;
}
}
#endif
}
fclose(file);
}
#endif
static void LinuxProcessList_readOomData(LinuxProcess* process, openat_arg_t procFd) {
FILE* file = fopenat(procFd, "oom_score", "r");
if (!file)
return;
char buffer[PROC_LINE_LENGTH + 1];
if (fgets(buffer, PROC_LINE_LENGTH, file)) {
unsigned int oom;
int ok = sscanf(buffer, "%u", &oom);
if (ok >= 1) {
process->oom = oom;
}
}
fclose(file);
}
static void LinuxProcessList_readCtxtData(LinuxProcess* process, openat_arg_t procFd) {
FILE* file = fopenat(procFd, "status", "r");
if (!file)
return;
char buffer[PROC_LINE_LENGTH + 1];
unsigned long ctxt = 0;
while (fgets(buffer, PROC_LINE_LENGTH, file)) {
if (String_startsWith(buffer, "voluntary_ctxt_switches:")) {
unsigned long vctxt;
int ok = sscanf(buffer, "voluntary_ctxt_switches:\t%lu", &vctxt);
if (ok >= 1) {
ctxt += vctxt;
}
} else if (String_startsWith(buffer, "nonvoluntary_ctxt_switches:")) {
unsigned long nvctxt;
int ok = sscanf(buffer, "nonvoluntary_ctxt_switches:\t%lu", &nvctxt);
if (ok >= 1) {
ctxt += nvctxt;
}
}
}
fclose(file);
process->ctxt_diff = (ctxt > process->ctxt_total) ? (ctxt - process->ctxt_total) : 0;
process->ctxt_total = ctxt;
}
static void LinuxProcessList_readSecattrData(LinuxProcess* process, openat_arg_t procFd) {
FILE* file = fopenat(procFd, "attr/current", "r");
if (!file) {
free(process->secattr);
process->secattr = NULL;
return;
}
char buffer[PROC_LINE_LENGTH + 1];
const char* res = fgets(buffer, sizeof(buffer), file);
fclose(file);
if (!res) {
free(process->secattr);
process->secattr = NULL;
return;
}
char* newline = strchr(buffer, '\n');
if (newline) {
*newline = '\0';
}
if (process->secattr && String_eq(process->secattr, buffer)) {
return;
}
free_and_xStrdup(&process->secattr, buffer);
}
static void LinuxProcessList_readCwd(LinuxProcess* process, openat_arg_t procFd) {
char pathBuffer[PATH_MAX + 1] = {0};
#if defined(HAVE_READLINKAT) && defined(HAVE_OPENAT)
ssize_t r = readlinkat(procFd, "cwd", pathBuffer, sizeof(pathBuffer) - 1);
#else
char filename[MAX_NAME + 1];
xSnprintf(filename, sizeof(filename), "%s/cwd", procFd);
ssize_t r = readlink(filename, pathBuffer, sizeof(pathBuffer) - 1);
#endif
if (r < 0) {
free(process->cwd);
process->cwd = NULL;
return;
}
pathBuffer[r] = '\0';
if (process->cwd && String_eq(process->cwd, pathBuffer))
return;
free_and_xStrdup(&process->cwd, pathBuffer);
}
#ifdef HAVE_DELAYACCT
static int handleNetlinkMsg(struct nl_msg* nlmsg, void* linuxProcess) {
struct nlmsghdr* nlhdr;
struct nlattr* nlattrs[TASKSTATS_TYPE_MAX + 1];
const struct nlattr* nlattr;
struct taskstats stats;
int rem;
LinuxProcess* lp = (LinuxProcess*) linuxProcess;
nlhdr = nlmsg_hdr(nlmsg);
if (genlmsg_parse(nlhdr, 0, nlattrs, TASKSTATS_TYPE_MAX, NULL) < 0) {
return NL_SKIP;
}
if ((nlattr = nlattrs[TASKSTATS_TYPE_AGGR_PID]) || (nlattr = nlattrs[TASKSTATS_TYPE_NULL])) {
memcpy(&stats, nla_data(nla_next(nla_data(nlattr), &rem)), sizeof(stats));
assert(lp->super.pid == (pid_t)stats.ac_pid);
unsigned long long int timeDelta = stats.ac_etime * 1000 - lp->delay_read_time;
#define BOUNDS(x) (isnan(x) ? 0.0 : ((x) > 100) ? 100.0 : (x))
#define DELTAPERC(x,y) BOUNDS((float) ((x) - (y)) / timeDelta * 100)
lp->cpu_delay_percent = DELTAPERC(stats.cpu_delay_total, lp->cpu_delay_total);
lp->blkio_delay_percent = DELTAPERC(stats.blkio_delay_total, lp->blkio_delay_total);
lp->swapin_delay_percent = DELTAPERC(stats.swapin_delay_total, lp->swapin_delay_total);
#undef DELTAPERC
#undef BOUNDS
lp->swapin_delay_total = stats.swapin_delay_total;
lp->blkio_delay_total = stats.blkio_delay_total;
lp->cpu_delay_total = stats.cpu_delay_total;
lp->delay_read_time = stats.ac_etime * 1000;
}
return NL_OK;
}
static void LinuxProcessList_readDelayAcctData(LinuxProcessList* this, LinuxProcess* process) {
struct nl_msg* msg;
if (!this->netlink_socket) {
LinuxProcessList_initNetlinkSocket(this);
if (!this->netlink_socket) {
goto delayacct_failure;
}
}
if (nl_socket_modify_cb(this->netlink_socket, NL_CB_VALID, NL_CB_CUSTOM, handleNetlinkMsg, process) < 0) {
goto delayacct_failure;
}
if (! (msg = nlmsg_alloc())) {
goto delayacct_failure;
}
if (! genlmsg_put(msg, NL_AUTO_PID, NL_AUTO_SEQ, this->netlink_family, 0, NLM_F_REQUEST, TASKSTATS_CMD_GET, TASKSTATS_VERSION)) {
nlmsg_free(msg);
}
if (nla_put_u32(msg, TASKSTATS_CMD_ATTR_PID, process->super.pid) < 0) {
nlmsg_free(msg);
}
if (nl_send_sync(this->netlink_socket, msg) < 0) {
goto delayacct_failure;
}
if (nl_recvmsgs_default(this->netlink_socket) < 0) {
goto delayacct_failure;
}
return;
delayacct_failure:
process->swapin_delay_percent = NAN;
process->blkio_delay_percent = NAN;
process->cpu_delay_percent = NAN;
}
#endif
static bool LinuxProcessList_readCmdlineFile(Process* process, openat_arg_t procFd) {
char command[4096 + 1]; // max cmdline length on Linux
ssize_t amtRead = xReadfileat(procFd, "cmdline", command, sizeof(command));
if (amtRead < 0)
return false;
if (amtRead == 0) {
if (process->state != 'Z') {
process->isKernelThread = true;
}
Process_updateCmdline(process, NULL, 0, 0);
return true;
}
int tokenEnd = 0;
int tokenStart = 0;
int lastChar = 0;
bool argSepNUL = false;
bool argSepSpace = false;
for (int i = 0; i < amtRead; i++) {
/* newline used as delimiter - when forming the mergedCommand, newline is
* converted to space by Process_makeCommandStr */
if (command[i] == '\0') {
command[i] = '\n';
} else {
/* Record some information for the argument parsing heuristic below. */
if (tokenEnd)
argSepNUL = true;
if (command[i] <= ' ')
argSepSpace = true;
}
if (command[i] == '\n') {
if (tokenEnd == 0) {
tokenEnd = i;
}
} else {
/* htop considers the next character after the last / that is before
* basenameOffset, as the start of the basename in cmdline - see
* Process_writeCommand */
if (!tokenEnd && command[i] == '/') {
tokenStart = i + 1;
}
lastChar = i;
}
}
command[lastChar + 1] = '\0';
if (!argSepNUL && argSepSpace) {
/* Argument parsing heuristic.
*
* This heuristic is used for processes that rewrite their command line.
* Normally the command line is split by using NUL bytes between each argument.
* But some programs like chrome flatten this using spaces.
*
* This heuristic tries its best to undo this loss of information.
* To achieve this, we treat every character <= 32 as argument separators
* (i.e. all of ASCII control sequences and space).
* We then search for the basename of the cmdline in the first argument we found that way.
* As path names may contain we try to cross-validate if the path we got that way exists.
*/
tokenStart = tokenEnd = 0;
// From initial scan we know there's at least one space.
// Check if that's part of a filename for an existing file.
if (Compat_faccessat(AT_FDCWD, command, F_OK, AT_SYMLINK_NOFOLLOW) != 0) {
// If we reach here the path does not exist.
// Thus begin searching for the part of it that actually is.
int tokenArg0Start = 0;
for (int i = 0; i <= lastChar; i++) {
/* Any ASCII control or space used as delimiter */
char tmpCommandChar = command[i];
if (command[i] <= ' ') {
if (!tokenEnd) {
command[i] = '\0';
bool found = Compat_faccessat(AT_FDCWD, command, F_OK, AT_SYMLINK_NOFOLLOW) == 0;
// Restore if this wasn't it
command[i] = found ? '\n' : tmpCommandChar;
if (found)
tokenEnd = i;
if (!tokenArg0Start)
tokenArg0Start = tokenStart;
} else {
// Split on every further separator, regardless of path correctness
command[i] = '\n';
}
} else if (!tokenEnd) {
if (command[i] == '/' || (command[i] == '\\' && (!tokenStart || command[tokenStart - 1] == '\\'))) {
tokenStart = i + 1;
} else if (command[i] == ':' && (command[i + 1] != '/' && command[i + 1] != '\\')) {
tokenEnd = i;
}
}
}
if (!tokenEnd) {
tokenStart = tokenArg0Start;
// No token delimiter found, forcibly split
for (int i = 0; i <= lastChar; i++) {
if (command[i] <= ' ') {
command[i] = '\n';
if (!tokenEnd) {
tokenEnd = i;
}
}
}
}
}
}
if (tokenEnd == 0) {
tokenEnd = lastChar + 1;
}
Process_updateCmdline(process, command, tokenStart, tokenEnd);
/* /proc/[pid]/comm could change, so should be updated */
if ((amtRead = xReadfileat(procFd, "comm", command, sizeof(command))) > 0) {
command[amtRead - 1] = '\0';
Process_updateComm(process, command);
} else if (process->procComm) {
Process_updateComm(process, NULL);
}
char filename[MAX_NAME + 1];
/* execve could change /proc/[pid]/exe, so procExe should be updated */
#if defined(HAVE_READLINKAT) && defined(HAVE_OPENAT)
amtRead = readlinkat(procFd, "exe", filename, sizeof(filename) - 1);
#else
char path[4096];
xSnprintf(path, sizeof(path), "%s/exe", procFd);
amtRead = readlink(path, filename, sizeof(filename) - 1);
#endif
if (amtRead > 0) {
filename[amtRead] = 0;
if (!process->procExe ||
(!process->procExeDeleted && !String_eq(filename, process->procExe)) ||
(process->procExeDeleted && !String_startsWith(filename, process->procExe))) {
const char* deletedMarker = " (deleted)";
const size_t markerLen = strlen(deletedMarker);
const size_t filenameLen = strlen(filename);
if (filenameLen > markerLen) {
bool oldExeDeleted = process->procExeDeleted;
process->procExeDeleted = String_eq(filename + filenameLen - markerLen, deletedMarker);
if (process->procExeDeleted)
filename[filenameLen - markerLen] = '\0';
process->mergedCommand.exeChanged |= oldExeDeleted ^ process->procExeDeleted;
}
Process_updateExe(process, filename);
}
} else if (process->procExe) {
Process_updateExe(process, NULL);
process->procExeDeleted = false;
}
return true;
}
static char* LinuxProcessList_updateTtyDevice(TtyDriver* ttyDrivers, unsigned long int tty_nr) {
unsigned int maj = major(tty_nr);
unsigned int min = minor(tty_nr);
int i = -1;
for (;;) {
i++;
if ((!ttyDrivers[i].path) || maj < ttyDrivers[i].major) {
break;
}
if (maj > ttyDrivers[i].major) {
continue;
}
if (min < ttyDrivers[i].minorFrom) {
break;
}
if (min > ttyDrivers[i].minorTo) {
continue;
}
unsigned int idx = min - ttyDrivers[i].minorFrom;
struct stat sstat;
char* fullPath;
for (;;) {
xAsprintf(&fullPath, "%s/%d", ttyDrivers[i].path, idx);
int err = stat(fullPath, &sstat);
if (err == 0 && major(sstat.st_rdev) == maj && minor(sstat.st_rdev) == min) {
return fullPath;
}
free(fullPath);
xAsprintf(&fullPath, "%s%d", ttyDrivers[i].path, idx);
err = stat(fullPath, &sstat);
if (err == 0 && major(sstat.st_rdev) == maj && minor(sstat.st_rdev) == min) {
return fullPath;
}
free(fullPath);
if (idx == min) {
break;
}
idx = min;
}
int err = stat(ttyDrivers[i].path, &sstat);
if (err == 0 && tty_nr == sstat.st_rdev) {
return xStrdup(ttyDrivers[i].path);
}
}
char* out;
xAsprintf(&out, "/dev/%u:%u", maj, min);
return out;
}
static bool LinuxProcessList_recurseProcTree(LinuxProcessList* this, openat_arg_t parentFd, const char* dirname, const Process* parent, double period) {
ProcessList* pl = (ProcessList*) this;
const struct dirent* entry;
const Settings* settings = pl->settings;
#ifdef HAVE_OPENAT
int dirFd = openat(parentFd, dirname, O_RDONLY | O_DIRECTORY | O_NOFOLLOW);
if (dirFd < 0)
return false;
DIR* dir = fdopendir(dirFd);
#else
char dirFd[4096];
xSnprintf(dirFd, sizeof(dirFd), "%s/%s", parentFd, dirname);
DIR* dir = opendir(dirFd);
#endif
if (!dir) {
Compat_openatArgClose(dirFd);
return false;
}
unsigned int cpus = pl->cpuCount;
bool hideKernelThreads = settings->hideKernelThreads;
bool hideUserlandThreads = settings->hideUserlandThreads;
while ((entry = readdir(dir)) != NULL) {
const char* name = entry->d_name;
// Ignore all non-directories
if (entry->d_type != DT_DIR && entry->d_type != DT_UNKNOWN) {
continue;
}
// The RedHat kernel hides threads with a dot.
// I believe this is non-standard.
if (name[0] == '.') {
name++;
}
// Just skip all non-number directories.
if (name[0] < '0' || name[0] > '9') {
continue;
}
// filename is a number: process directory
int pid;
{
char* endptr;
unsigned long parsedPid = strtoul(name, &endptr, 10);
if (parsedPid == 0 || parsedPid == ULONG_MAX || *endptr != '\0')
continue;
pid = parsedPid;
}
// Skip task directory of main thread
if (parent && pid == parent->pid)
continue;
bool preExisting;
Process* proc = ProcessList_getProcess(pl, pid, &preExisting, LinuxProcess_new);
LinuxProcess* lp = (LinuxProcess*) proc;
proc->tgid = parent ? parent->pid : pid;
proc->isUserlandThread = proc->pid != proc->tgid;
#ifdef HAVE_OPENAT
int procFd = openat(dirFd, entry->d_name, O_PATH | O_DIRECTORY | O_NOFOLLOW);
if (procFd < 0)
goto errorReadingProcess;
#else
char procFd[4096];
xSnprintf(procFd, sizeof(procFd), "%s/%s", dirFd, entry->d_name);
#endif
LinuxProcessList_recurseProcTree(this, procFd, "task", proc, period);
/*
* These conditions will not trigger on first occurrence, cause we need to
* add the process to the ProcessList and do all one time scans
* (e.g. parsing the cmdline to detect a kernel thread)
* But it will short-circuit subsequent scans.
*/
if (preExisting && hideKernelThreads && Process_isKernelThread(proc)) {
proc->updated = true;
proc->show = false;
pl->kernelThreads++;
pl->totalTasks++;
Compat_openatArgClose(procFd);
continue;
}
if (preExisting && hideUserlandThreads && Process_isUserlandThread(proc)) {
proc->updated = true;
proc->show = false;
pl->userlandThreads++;
pl->totalTasks++;
Compat_openatArgClose(procFd);
continue;
}
if (settings->flags & PROCESS_FLAG_IO)
LinuxProcessList_readIoFile(lp, procFd, pl->realtimeMs);
if (!LinuxProcessList_readStatmFile(lp, procFd, !!(settings->flags & PROCESS_FLAG_LINUX_LRS_FIX), pl->realtimeMs))
goto errorReadingProcess;
if ((settings->flags & PROCESS_FLAG_LINUX_SMAPS) && !Process_isKernelThread(proc)) {
if (!parent) {
// Read smaps file of each process only every second pass to improve performance
static int smaps_flag = 0;
if ((pid & 1) == smaps_flag) {
LinuxProcessList_readSmapsFile(lp, procFd, this->haveSmapsRollup);
}
if (pid == 1) {
smaps_flag = !smaps_flag;
}
} else {
lp->m_pss = ((const LinuxProcess*)parent)->m_pss;
}
}
char command[MAX_NAME + 1];
unsigned long long int lasttimes = (lp->utime + lp->stime);
unsigned long int tty_nr = proc->tty_nr;
if (! LinuxProcessList_readStatFile(proc, procFd, command, sizeof(command)))
goto errorReadingProcess;
if (tty_nr != proc->tty_nr && this->ttyDrivers) {
free(proc->tty_name);
proc->tty_name = LinuxProcessList_updateTtyDevice(this->ttyDrivers, proc->tty_nr);
}
if (settings->flags & PROCESS_FLAG_LINUX_IOPRIO) {
LinuxProcess_updateIOPriority(lp);
}
/* period might be 0 after system sleep */
float percent_cpu = (period < 1E-6) ? 0.0F : ((lp->utime + lp->stime - lasttimes) / period * 100.0);
proc->percent_cpu = CLAMP(percent_cpu, 0.0F, cpus * 100.0F);
proc->percent_mem = proc->m_resident / (double)(pl->totalMem) * 100.0;
if (!preExisting) {
if (! LinuxProcessList_statProcessDir(proc, procFd))
goto errorReadingProcess;
proc->user = UsersTable_getRef(pl->usersTable, proc->st_uid);
#ifdef HAVE_OPENVZ
if (settings->flags & PROCESS_FLAG_LINUX_OPENVZ) {
LinuxProcessList_readOpenVZData(lp, procFd);
}
#endif
#ifdef HAVE_VSERVER
if (settings->flags & PROCESS_FLAG_LINUX_VSERVER) {
LinuxProcessList_readVServerData(lp, procFd);
}
#endif
if (! LinuxProcessList_readCmdlineFile(proc, procFd)) {
goto errorReadingProcess;
}
Process_fillStarttimeBuffer(proc);
ProcessList_add(pl, proc);
} else {
if (settings->updateProcessNames && proc->state != 'Z') {
if (! LinuxProcessList_readCmdlineFile(proc, procFd)) {
goto errorReadingProcess;
}
}
}
#ifdef HAVE_DELAYACCT
if (settings->flags & PROCESS_FLAG_LINUX_DELAYACCT) {
LinuxProcessList_readDelayAcctData(this, lp);
}
#endif
if (settings->flags & PROCESS_FLAG_LINUX_CGROUP) {
LinuxProcessList_readCGroupFile(lp, procFd);
}
if (settings->flags & PROCESS_FLAG_LINUX_OOM) {
LinuxProcessList_readOomData(lp, procFd);
}
if (settings->flags & PROCESS_FLAG_LINUX_CTXT) {
LinuxProcessList_readCtxtData(lp, procFd);
}
if (settings->flags & PROCESS_FLAG_LINUX_SECATTR) {
LinuxProcessList_readSecattrData(lp, procFd);
}
if (settings->flags & PROCESS_FLAG_LINUX_CWD) {
LinuxProcessList_readCwd(lp, procFd);
}
if (proc->state == 'Z' && !proc->cmdline) {
Process_updateCmdline(proc, command, 0, 0);
} else if (Process_isThread(proc)) {
if (settings->showThreadNames || Process_isKernelThread(proc)) {
Process_updateCmdline(proc, command, 0, 0);
}
if (Process_isKernelThread(proc)) {
pl->kernelThreads++;
} else {
pl->userlandThreads++;
}
}
/* Set at the end when we know if a new entry is a thread */
proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc)));
pl->totalTasks++;
/* runningTasks is set in LinuxProcessList_scanCPUTime() from /proc/stat */
proc->updated = true;
Compat_openatArgClose(procFd);
continue;
// Exception handler.
errorReadingProcess:
{
#ifdef HAVE_OPENAT
if (procFd >= 0)
close(procFd);
#endif
if (preExisting) {
ProcessList_remove(pl, proc);
} else {
Process_delete((Object*)proc);
}
}
}
closedir(dir);
return true;
}
static inline void LinuxProcessList_scanMemoryInfo(ProcessList* this) {
memory_t availableMem = 0;
memory_t freeMem = 0;
memory_t totalMem = 0;
memory_t buffersMem = 0;
memory_t cachedMem = 0;
memory_t sharedMem = 0;
memory_t swapTotalMem = 0;
memory_t swapCacheMem = 0;
memory_t swapFreeMem = 0;
memory_t sreclaimableMem = 0;
FILE* file = fopen(PROCMEMINFOFILE, "r");
if (!file)
CRT_fatalError("Cannot open " PROCMEMINFOFILE);
char buffer[128];
while (fgets(buffer, sizeof(buffer), file)) {
#define tryRead(label, variable) \
if (String_startsWith(buffer, label)) { \
memory_t parsed_; \
if (sscanf(buffer + strlen(label), "%llu kB", &parsed_) == 1) { \
(variable) = parsed_; \
} \
break; \
}
switch (buffer[0]) {
case 'M':
tryRead("MemAvailable:", availableMem);
tryRead("MemFree:", freeMem);
tryRead("MemTotal:", totalMem);
break;
case 'B':
tryRead("Buffers:", buffersMem);
break;
case 'C':
tryRead("Cached:", cachedMem);
break;
case 'S':
switch (buffer[1]) {
case 'h':
tryRead("Shmem:", sharedMem);
break;
case 'w':
tryRead("SwapTotal:", swapTotalMem);
tryRead("SwapCached:", swapCacheMem);
tryRead("SwapFree:", swapFreeMem);
break;
case 'R':
tryRead("SReclaimable:", sreclaimableMem);
break;
}
break;
}
#undef tryRead
}
fclose(file);
/*
* Compute memory partition like procps(free)
* https://gitlab.com/procps-ng/procps/-/blob/master/proc/sysinfo.c
*
* Adjustments:
* - Shmem in part of Cached (see https://lore.kernel.org/patchwork/patch/648763/),
* do not show twice by subtracting from Cached and do not subtract twice from used.
*/
this->totalMem = totalMem;
this->cachedMem = cachedMem + sreclaimableMem - sharedMem;
this->sharedMem = sharedMem;
const memory_t usedDiff = freeMem + cachedMem + sreclaimableMem + buffersMem;
this->usedMem = (totalMem >= usedDiff) ? totalMem - usedDiff : totalMem - freeMem;
this->buffersMem = buffersMem;
this->availableMem = availableMem != 0 ? MINIMUM(availableMem, totalMem) : freeMem;
this->totalSwap = swapTotalMem;
this->usedSwap = swapTotalMem - swapFreeMem - swapCacheMem;
this->cachedSwap = swapCacheMem;
}
static void LinuxProcessList_scanHugePages(LinuxProcessList* this) {
this->totalHugePageMem = 0;
for (unsigned i = 0; i < HTOP_HUGEPAGE_COUNT; i++) {
this->usedHugePageMem[i] = MEMORY_MAX;
}
DIR* dir = opendir("/sys/kernel/mm/hugepages");
if (!dir)
return;
const struct dirent* entry;
while ((entry = readdir(dir)) != NULL) {
const char* name = entry->d_name;
/* Ignore all non-directories */
if (entry->d_type != DT_DIR && entry->d_type != DT_UNKNOWN)
continue;
if (!String_startsWith(name, "hugepages-"))
continue;
char* endptr;
unsigned long int hugePageSize = strtoul(name + strlen("hugepages-"), &endptr, 10);
if (!endptr || *endptr != 'k')
continue;
char content[64];
char hugePagePath[128];
ssize_t r;
xSnprintf(hugePagePath, sizeof(hugePagePath), "/sys/kernel/mm/hugepages/%s/nr_hugepages", name);
r = xReadfile(hugePagePath, content, sizeof(content));
if (r <= 0)
continue;
memory_t total = strtoull(content, NULL, 10);
if (total == 0)
continue;
xSnprintf(hugePagePath, sizeof(hugePagePath), "/sys/kernel/mm/hugepages/%s/free_hugepages", name);
r = xReadfile(hugePagePath, content, sizeof(content));
if (r <= 0)
continue;
memory_t free = strtoull(content, NULL, 10);
int shift = ffsl(hugePageSize) - 1 - (HTOP_HUGEPAGE_BASE_SHIFT - 10);
assert(shift >= 0 && shift < HTOP_HUGEPAGE_COUNT);
this->totalHugePageMem += total * hugePageSize;
this->usedHugePageMem[shift] = (total - free) * hugePageSize;
}
closedir(dir);
}
static inline void LinuxProcessList_scanZramInfo(LinuxProcessList* this) {
memory_t totalZram = 0;
memory_t usedZramComp = 0;
memory_t usedZramOrig = 0;
char mm_stat[34];
char disksize[34];
unsigned int i = 0;
for (;;) {
xSnprintf(mm_stat, sizeof(mm_stat), "/sys/block/zram%u/mm_stat", i);
xSnprintf(disksize, sizeof(disksize), "/sys/block/zram%u/disksize", i);
i++;
FILE* disksize_file = fopen(disksize, "r");
FILE* mm_stat_file = fopen(mm_stat, "r");
if (disksize_file == NULL || mm_stat_file == NULL) {
if (disksize_file) {
fclose(disksize_file);
}
if (mm_stat_file) {
fclose(mm_stat_file);
}
break;
}
memory_t size = 0;
memory_t orig_data_size = 0;
memory_t compr_data_size = 0;
if (!fscanf(disksize_file, "%llu\n", &size) ||
!fscanf(mm_stat_file, " %llu %llu", &orig_data_size, &compr_data_size)) {
fclose(disksize_file);
fclose(mm_stat_file);
break;
}
totalZram += size;
usedZramComp += compr_data_size;
usedZramOrig += orig_data_size;
fclose(disksize_file);
fclose(mm_stat_file);
}
this->zram.totalZram = totalZram / 1024;
this->zram.usedZramComp = usedZramComp / 1024;
this->zram.usedZramOrig = usedZramOrig / 1024;
}
static inline void LinuxProcessList_scanZfsArcstats(LinuxProcessList* lpl) {
memory_t dbufSize = 0;
memory_t dnodeSize = 0;
memory_t bonusSize = 0;
FILE* file = fopen(PROCARCSTATSFILE, "r");
if (file == NULL) {
lpl->zfs.enabled = 0;
return;
}
char buffer[128];
while (fgets(buffer, 128, file)) {
#define tryRead(label, variable) \
if (String_startsWith(buffer, label)) { \
sscanf(buffer + strlen(label), " %*2u %32llu", variable); \
break; \
}
#define tryReadFlag(label, variable, flag) \
if (String_startsWith(buffer, label)) { \
(flag) = sscanf(buffer + strlen(label), " %*2u %32llu", variable); \
break; \
}
switch (buffer[0]) {
case 'c':
tryRead("c_max", &lpl->zfs.max);
tryReadFlag("compressed_size", &lpl->zfs.compressed, lpl->zfs.isCompressed);
break;
case 'u':
tryRead("uncompressed_size", &lpl->zfs.uncompressed);
break;
case 's':
tryRead("size", &lpl->zfs.size);
break;
case 'h':
tryRead("hdr_size", &lpl->zfs.header);
break;
case 'd':
tryRead("dbuf_size", &dbufSize);
tryRead("dnode_size", &dnodeSize);
break;
case 'b':
tryRead("bonus_size", &bonusSize);
break;
case 'a':
tryRead("anon_size", &lpl->zfs.anon);
break;
case 'm':
tryRead("mfu_size", &lpl->zfs.MFU);
tryRead("mru_size", &lpl->zfs.MRU);
break;
}
#undef tryRead
#undef tryReadFlag
}
fclose(file);
lpl->zfs.enabled = (lpl->zfs.size > 0 ? 1 : 0);
lpl->zfs.size /= 1024;
lpl->zfs.max /= 1024;
lpl->zfs.MFU /= 1024;
lpl->zfs.MRU /= 1024;
lpl->zfs.anon /= 1024;
lpl->zfs.header /= 1024;
lpl->zfs.other = (dbufSize + dnodeSize + bonusSize) / 1024;
if ( lpl->zfs.isCompressed ) {
lpl->zfs.compressed /= 1024;
lpl->zfs.uncompressed /= 1024;
}
}
static inline double LinuxProcessList_scanCPUTime(ProcessList* super) {
LinuxProcessList* this = (LinuxProcessList*) super;
FILE* file = fopen(PROCSTATFILE, "r");
if (!file)
CRT_fatalError("Cannot open " PROCSTATFILE);
LinuxProcessList_updateCPUcount(super, file);
rewind(file);
unsigned int cpus = super->cpuCount;
for (unsigned int i = 0; i <= cpus; i++) {
char buffer[PROC_LINE_LENGTH + 1];
unsigned long long int usertime, nicetime, systemtime, idletime;
unsigned long long int ioWait = 0, irq = 0, softIrq = 0, steal = 0, guest = 0, guestnice = 0;
// Depending on your kernel version,
// 5, 7, 8 or 9 of these fields will be set.
// The rest will remain at zero.
const char* ok = fgets(buffer, sizeof(buffer), file);
if (!ok)
break;
if (i == 0) {
(void) sscanf(buffer, "cpu %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu", &usertime, &nicetime, &systemtime, &idletime, &ioWait, &irq, &softIrq, &steal, &guest, &guestnice);
} else {
unsigned int cpuid;
(void) sscanf(buffer, "cpu%4u %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu %16llu", &cpuid, &usertime, &nicetime, &systemtime, &idletime, &ioWait, &irq, &softIrq, &steal, &guest, &guestnice);
assert(cpuid == i - 1);
}
// Guest time is already accounted in usertime
usertime -= guest;
nicetime -= guestnice;
// Fields existing on kernels >= 2.6
// (and RHEL's patched kernel 2.4...)
unsigned long long int idlealltime = idletime + ioWait;
unsigned long long int systemalltime = systemtime + irq + softIrq;
unsigned long long int virtalltime = guest + guestnice;
unsigned long long int totaltime = usertime + nicetime + systemalltime + idlealltime + steal + virtalltime;
CPUData* cpuData = &(this->cpus[i]);
// Since we do a subtraction (usertime - guest) and cputime64_to_clock_t()
// used in /proc/stat rounds down numbers, it can lead to a case where the
// integer overflow.
#define WRAP_SUBTRACT(a,b) (((a) > (b)) ? (a) - (b) : 0)
cpuData->userPeriod = WRAP_SUBTRACT(usertime, cpuData->userTime);
cpuData->nicePeriod = WRAP_SUBTRACT(nicetime, cpuData->niceTime);
cpuData->systemPeriod = WRAP_SUBTRACT(systemtime, cpuData->systemTime);
cpuData->systemAllPeriod = WRAP_SUBTRACT(systemalltime, cpuData->systemAllTime);
cpuData->idleAllPeriod = WRAP_SUBTRACT(idlealltime, cpuData->idleAllTime);
cpuData->idlePeriod = WRAP_SUBTRACT(idletime, cpuData->idleTime);
cpuData->ioWaitPeriod = WRAP_SUBTRACT(ioWait, cpuData->ioWaitTime);
cpuData->irqPeriod = WRAP_SUBTRACT(irq, cpuData->irqTime);
cpuData->softIrqPeriod = WRAP_SUBTRACT(softIrq, cpuData->softIrqTime);
cpuData->stealPeriod = WRAP_SUBTRACT(steal, cpuData->stealTime);
cpuData->guestPeriod = WRAP_SUBTRACT(virtalltime, cpuData->guestTime);
cpuData->totalPeriod = WRAP_SUBTRACT(totaltime, cpuData->totalTime);
#undef WRAP_SUBTRACT
cpuData->userTime = usertime;
cpuData->niceTime = nicetime;
cpuData->systemTime = systemtime;
cpuData->systemAllTime = systemalltime;
cpuData->idleAllTime = idlealltime;
cpuData->idleTime = idletime;
cpuData->ioWaitTime = ioWait;
cpuData->irqTime = irq;
cpuData->softIrqTime = softIrq;
cpuData->stealTime = steal;
cpuData->guestTime = virtalltime;
cpuData->totalTime = totaltime;
}
double period = (double)this->cpus[0].totalPeriod / cpus;
char buffer[PROC_LINE_LENGTH + 1];
while (fgets(buffer, sizeof(buffer), file)) {
if (String_startsWith(buffer, "procs_running")) {
super->runningTasks = strtoul(buffer + strlen("procs_running"), NULL, 10);
break;
}
}
fclose(file);
return period;
}
static int scanCPUFreqencyFromSysCPUFreq(LinuxProcessList* this) {
unsigned int cpus = this->super.cpuCount;
int numCPUsWithFrequency = 0;
unsigned long totalFrequency = 0;
/*
* On some AMD and Intel CPUs read()ing scaling_cur_freq is quite slow (> 1ms). This delay
* accumulates for every core. For details see issue#471.
* If the read on CPU 0 takes longer than 500us bail out and fall back to reading the
* frequencies from /proc/cpuinfo.
* Once the condition has been met, bail out early for the next couple of scans.
*/
static int timeout = 0;
if (timeout > 0) {
timeout--;
return -1;
}
for (unsigned int i = 0; i < cpus; ++i) {
char pathBuffer[64];
xSnprintf(pathBuffer, sizeof(pathBuffer), "/sys/devices/system/cpu/cpu%u/cpufreq/scaling_cur_freq", i);
struct timespec start;
if (i == 0)
clock_gettime(CLOCK_MONOTONIC, &start);
FILE* file = fopen(pathBuffer, "r");
if (!file)
return -errno;
unsigned long frequency;
if (fscanf(file, "%lu", &frequency) == 1) {
/* convert kHz to MHz */
frequency = frequency / 1000;
this->cpus[i + 1].frequency = frequency;
numCPUsWithFrequency++;
totalFrequency += frequency;
}
fclose(file);
if (i == 0) {
struct timespec end;
clock_gettime(CLOCK_MONOTONIC, &end);
const time_t timeTakenUs = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;
if (timeTakenUs > 500) {
timeout = 30;
return -1;
}
}
}
if (numCPUsWithFrequency > 0)
this->cpus[0].frequency = (double)totalFrequency / numCPUsWithFrequency;
return 0;
}
static void scanCPUFreqencyFromCPUinfo(LinuxProcessList* this) {
FILE* file = fopen(PROCCPUINFOFILE, "r");
if (file == NULL)
return;
unsigned int cpus = this->super.cpuCount;
int numCPUsWithFrequency = 0;
double totalFrequency = 0;
int cpuid = -1;
while (!feof(file)) {
double frequency;
char buffer[PROC_LINE_LENGTH];
if (fgets(buffer, PROC_LINE_LENGTH, file) == NULL)
break;
if (
(sscanf(buffer, "processor : %d", &cpuid) == 1) ||
(sscanf(buffer, "processor: %d", &cpuid) == 1)
) {
continue;
} else if (
(sscanf(buffer, "cpu MHz : %lf", &frequency) == 1) ||
(sscanf(buffer, "cpu MHz: %lf", &frequency) == 1) ||
(sscanf(buffer, "clock : %lfMHz", &frequency) == 1) ||
(sscanf(buffer, "clock: %lfMHz", &frequency) == 1)
) {
if (cpuid < 0 || (unsigned int)cpuid > (cpus - 1)) {
continue;
}
CPUData* cpuData = &(this->cpus[cpuid + 1]);
/* do not override sysfs data */
if (isnan(cpuData->frequency)) {
cpuData->frequency = frequency;
}
numCPUsWithFrequency++;
totalFrequency += frequency;
} else if (buffer[0] == '\n') {
cpuid = -1;
}
}
fclose(file);
if (numCPUsWithFrequency > 0) {
this->cpus[0].frequency = totalFrequency / numCPUsWithFrequency;
}
}
static void LinuxProcessList_scanCPUFrequency(LinuxProcessList* this) {
unsigned int cpus = this->super.cpuCount;
for (unsigned int i = 0; i <= cpus; i++) {
this->cpus[i].frequency = NAN;
}
if (scanCPUFreqencyFromSysCPUFreq(this) == 0) {
return;
}
scanCPUFreqencyFromCPUinfo(this);
}
void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) {
LinuxProcessList* this = (LinuxProcessList*) super;
const Settings* settings = super->settings;
LinuxProcessList_scanMemoryInfo(super);
LinuxProcessList_scanHugePages(this);
LinuxProcessList_scanZfsArcstats(this);
LinuxProcessList_scanZramInfo(this);
double period = LinuxProcessList_scanCPUTime(super);
if (settings->showCPUFrequency) {
LinuxProcessList_scanCPUFrequency(this);
}
#ifdef HAVE_SENSORS_SENSORS_H
if (settings->showCPUTemperature)
LibSensors_getCPUTemperatures(this->cpus, this->super.cpuCount);
#endif
// in pause mode only gather global data for meters (CPU/memory/...)
if (pauseProcessUpdate) {
return;
}
/* PROCDIR is an absolute path */
assert(PROCDIR[0] == '/');
#ifdef HAVE_OPENAT
openat_arg_t rootFd = AT_FDCWD;
#else
openat_arg_t rootFd = "";
#endif
LinuxProcessList_recurseProcTree(this, rootFd, PROCDIR, NULL, period);
}