htop/darwin/Platform.c
Christian Göttsche 5bc988ad6d Use correct command field as default field
The default htop command process field has the enum identifier `COMM`
but the name `Command` (`COMM` is the field name for /proc/<PID>/comm).
2021-12-17 14:45:15 +01:00

444 lines
13 KiB
C

/*
htop - darwin/Platform.c
(C) 2014 Hisham H. Muhammad
(C) 2015 David C. Hunt
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "darwin/Platform.h"
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <CoreFoundation/CFString.h>
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/ps/IOPowerSources.h>
#include <IOKit/ps/IOPSKeys.h>
#include "ClockMeter.h"
#include "CPUMeter.h"
#include "CRT.h"
#include "DateMeter.h"
#include "DateTimeMeter.h"
#include "HostnameMeter.h"
#include "LoadAverageMeter.h"
#include "Macros.h"
#include "MemoryMeter.h"
#include "MemorySwapMeter.h"
#include "ProcessLocksScreen.h"
#include "SwapMeter.h"
#include "SysArchMeter.h"
#include "TasksMeter.h"
#include "UptimeMeter.h"
#include "darwin/DarwinProcessList.h"
#include "darwin/PlatformHelpers.h"
#include "zfs/ZfsArcMeter.h"
#include "zfs/ZfsCompressedArcMeter.h"
#ifdef HAVE_HOST_GET_CLOCK_SERVICE
#include <mach/clock.h>
#include <mach/mach.h>
#endif
#ifdef HAVE_MACH_MACH_TIME_H
#include <mach/mach_time.h>
#endif
const ScreenDefaults Platform_defaultScreens[] = {
{
.name = "Main",
.columns = "PID USER PRIORITY NICE M_VIRT M_RESIDENT STATE PERCENT_CPU PERCENT_MEM TIME Command",
.sortKey = "PERCENT_CPU",
},
};
const unsigned int Platform_numberOfDefaultScreens = ARRAYSIZE(Platform_defaultScreens);
const SignalItem Platform_signals[] = {
{ .name = " 0 Cancel", .number = 0 },
{ .name = " 1 SIGHUP", .number = 1 },
{ .name = " 2 SIGINT", .number = 2 },
{ .name = " 3 SIGQUIT", .number = 3 },
{ .name = " 4 SIGILL", .number = 4 },
{ .name = " 5 SIGTRAP", .number = 5 },
{ .name = " 6 SIGABRT", .number = 6 },
{ .name = " 6 SIGIOT", .number = 6 },
{ .name = " 7 SIGEMT", .number = 7 },
{ .name = " 8 SIGFPE", .number = 8 },
{ .name = " 9 SIGKILL", .number = 9 },
{ .name = "10 SIGBUS", .number = 10 },
{ .name = "11 SIGSEGV", .number = 11 },
{ .name = "12 SIGSYS", .number = 12 },
{ .name = "13 SIGPIPE", .number = 13 },
{ .name = "14 SIGALRM", .number = 14 },
{ .name = "15 SIGTERM", .number = 15 },
{ .name = "16 SIGURG", .number = 16 },
{ .name = "17 SIGSTOP", .number = 17 },
{ .name = "18 SIGTSTP", .number = 18 },
{ .name = "19 SIGCONT", .number = 19 },
{ .name = "20 SIGCHLD", .number = 20 },
{ .name = "21 SIGTTIN", .number = 21 },
{ .name = "22 SIGTTOU", .number = 22 },
{ .name = "23 SIGIO", .number = 23 },
{ .name = "24 SIGXCPU", .number = 24 },
{ .name = "25 SIGXFSZ", .number = 25 },
{ .name = "26 SIGVTALRM", .number = 26 },
{ .name = "27 SIGPROF", .number = 27 },
{ .name = "28 SIGWINCH", .number = 28 },
{ .name = "29 SIGINFO", .number = 29 },
{ .name = "30 SIGUSR1", .number = 30 },
{ .name = "31 SIGUSR2", .number = 31 },
};
const unsigned int Platform_numberOfSignals = ARRAYSIZE(Platform_signals);
const MeterClass* const Platform_meterTypes[] = {
&CPUMeter_class,
&ClockMeter_class,
&DateMeter_class,
&DateTimeMeter_class,
&LoadAverageMeter_class,
&LoadMeter_class,
&MemoryMeter_class,
&SwapMeter_class,
&MemorySwapMeter_class,
&TasksMeter_class,
&BatteryMeter_class,
&HostnameMeter_class,
&SysArchMeter_class,
&UptimeMeter_class,
&AllCPUsMeter_class,
&AllCPUs2Meter_class,
&AllCPUs4Meter_class,
&AllCPUs8Meter_class,
&LeftCPUsMeter_class,
&RightCPUsMeter_class,
&LeftCPUs2Meter_class,
&RightCPUs2Meter_class,
&LeftCPUs4Meter_class,
&RightCPUs4Meter_class,
&LeftCPUs8Meter_class,
&RightCPUs8Meter_class,
&ZfsArcMeter_class,
&ZfsCompressedArcMeter_class,
&BlankMeter_class,
NULL
};
static double Platform_nanosecondsPerMachTick = 1.0;
static double Platform_nanosecondsPerSchedulerTick = -1;
bool Platform_init(void) {
Platform_nanosecondsPerMachTick = Platform_calculateNanosecondsPerMachTick();
// Determine the number of scheduler clock ticks per second
errno = 0;
long scheduler_ticks_per_sec = sysconf(_SC_CLK_TCK);
if (errno || scheduler_ticks_per_sec < 1) {
CRT_fatalError("Unable to retrieve clock tick rate");
}
const double nanos_per_sec = 1e9;
Platform_nanosecondsPerSchedulerTick = nanos_per_sec / scheduler_ticks_per_sec;
return true;
}
// Converts ticks in the Mach "timebase" to nanoseconds.
// See `mach_timebase_info`, as used to define the `Platform_nanosecondsPerMachTick` constant.
uint64_t Platform_machTicksToNanoseconds(uint64_t mach_ticks) {
return (uint64_t) ((double) mach_ticks * Platform_nanosecondsPerMachTick);
}
// Converts "scheduler ticks" to nanoseconds.
// See `sysconf(_SC_CLK_TCK)`, as used to define the `Platform_nanosecondsPerSchedulerTick` constant.
double Platform_schedulerTicksToNanoseconds(const double scheduler_ticks) {
return scheduler_ticks * Platform_nanosecondsPerSchedulerTick;
}
void Platform_done(void) {
/* no platform-specific cleanup needed */
}
void Platform_setBindings(Htop_Action* keys) {
/* no platform-specific key bindings */
(void) keys;
}
int Platform_getUptime() {
struct timeval bootTime, currTime;
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
size_t size = sizeof(bootTime);
int err = sysctl(mib, 2, &bootTime, &size, NULL, 0);
if (err) {
return -1;
}
gettimeofday(&currTime, NULL);
return (int) difftime(currTime.tv_sec, bootTime.tv_sec);
}
void Platform_getLoadAverage(double* one, double* five, double* fifteen) {
double results[3];
if (3 == getloadavg(results, 3)) {
*one = results[0];
*five = results[1];
*fifteen = results[2];
} else {
*one = 0;
*five = 0;
*fifteen = 0;
}
}
int Platform_getMaxPid() {
/* http://opensource.apple.com/source/xnu/xnu-2782.1.97/bsd/sys/proc_internal.hh */
return 99999;
}
static double Platform_setCPUAverageValues(Meter* mtr) {
const ProcessList* dpl = mtr->pl;
unsigned int activeCPUs = dpl->activeCPUs;
double sumNice = 0.0;
double sumNormal = 0.0;
double sumKernel = 0.0;
double sumPercent = 0.0;
for (unsigned int i = 1; i <= dpl->existingCPUs; i++) {
sumPercent += Platform_setCPUValues(mtr, i);
sumNice += mtr->values[CPU_METER_NICE];
sumNormal += mtr->values[CPU_METER_NORMAL];
sumKernel += mtr->values[CPU_METER_KERNEL];
}
mtr->values[CPU_METER_NICE] = sumNice / activeCPUs;
mtr->values[CPU_METER_NORMAL] = sumNormal / activeCPUs;
mtr->values[CPU_METER_KERNEL] = sumKernel / activeCPUs;
return sumPercent / activeCPUs;
}
double Platform_setCPUValues(Meter* mtr, unsigned int cpu) {
if (cpu == 0) {
return Platform_setCPUAverageValues(mtr);
}
const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl;
const processor_cpu_load_info_t prev = &dpl->prev_load[cpu - 1];
const processor_cpu_load_info_t curr = &dpl->curr_load[cpu - 1];
double total = 0;
/* Take the sums */
for (size_t i = 0; i < CPU_STATE_MAX; ++i) {
total += (double)curr->cpu_ticks[i] - (double)prev->cpu_ticks[i];
}
mtr->values[CPU_METER_NICE]
= ((double)curr->cpu_ticks[CPU_STATE_NICE] - (double)prev->cpu_ticks[CPU_STATE_NICE]) * 100.0 / total;
mtr->values[CPU_METER_NORMAL]
= ((double)curr->cpu_ticks[CPU_STATE_USER] - (double)prev->cpu_ticks[CPU_STATE_USER]) * 100.0 / total;
mtr->values[CPU_METER_KERNEL]
= ((double)curr->cpu_ticks[CPU_STATE_SYSTEM] - (double)prev->cpu_ticks[CPU_STATE_SYSTEM]) * 100.0 / total;
mtr->curItems = 3;
/* Convert to percent and return */
total = mtr->values[CPU_METER_NICE] + mtr->values[CPU_METER_NORMAL] + mtr->values[CPU_METER_KERNEL];
mtr->values[CPU_METER_FREQUENCY] = NAN;
mtr->values[CPU_METER_TEMPERATURE] = NAN;
return CLAMP(total, 0.0, 100.0);
}
void Platform_setMemoryValues(Meter* mtr) {
const DarwinProcessList* dpl = (const DarwinProcessList*)mtr->pl;
const struct vm_statistics* vm = &dpl->vm_stats;
double page_K = (double)vm_page_size / (double)1024;
mtr->total = dpl->host_info.max_mem / 1024;
mtr->values[0] = (double)(vm->active_count + vm->wire_count) * page_K;
mtr->values[1] = (double)vm->purgeable_count * page_K;
// mtr->values[2] = "shared memory, like tmpfs and shm"
mtr->values[3] = (double)vm->inactive_count * page_K;
// mtr->values[4] = "available memory"
}
void Platform_setSwapValues(Meter* mtr) {
int mib[2] = {CTL_VM, VM_SWAPUSAGE};
struct xsw_usage swapused;
size_t swlen = sizeof(swapused);
sysctl(mib, 2, &swapused, &swlen, NULL, 0);
mtr->total = swapused.xsu_total / 1024;
mtr->values[0] = swapused.xsu_used / 1024;
}
void Platform_setZfsArcValues(Meter* this) {
const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl;
ZfsArcMeter_readStats(this, &(dpl->zfs));
}
void Platform_setZfsCompressedArcValues(Meter* this) {
const DarwinProcessList* dpl = (const DarwinProcessList*) this->pl;
ZfsCompressedArcMeter_readStats(this, &(dpl->zfs));
}
char* Platform_getProcessEnv(pid_t pid) {
char* env = NULL;
int argmax;
size_t bufsz = sizeof(argmax);
int mib[3];
mib[0] = CTL_KERN;
mib[1] = KERN_ARGMAX;
if (sysctl(mib, 2, &argmax, &bufsz, 0, 0) == 0) {
char* buf = xMalloc(argmax);
if (buf) {
mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
mib[2] = pid;
bufsz = argmax;
if (sysctl(mib, 3, buf, &bufsz, 0, 0) == 0) {
if (bufsz > sizeof(int)) {
char *p = buf, *endp = buf + bufsz;
int argc = *(int*)(void*)p;
p += sizeof(int);
// skip exe
p = strchr(p, 0) + 1;
// skip padding
while (!*p && p < endp)
++p;
// skip argv
for (; argc-- && p < endp; p = strrchr(p, 0) + 1)
;
// skip padding
while (!*p && p < endp)
++p;
size_t size = endp - p;
env = xMalloc(size + 2);
memcpy(env, p, size);
env[size] = 0;
env[size + 1] = 0;
}
}
free(buf);
}
}
return env;
}
char* Platform_getInodeFilename(pid_t pid, ino_t inode) {
(void)pid;
(void)inode;
return NULL;
}
FileLocks_ProcessData* Platform_getProcessLocks(pid_t pid) {
(void)pid;
return NULL;
}
bool Platform_getDiskIO(DiskIOData* data) {
// TODO
(void)data;
return false;
}
bool Platform_getNetworkIO(NetworkIOData* data) {
// TODO
(void)data;
return false;
}
void Platform_getBattery(double* percent, ACPresence* isOnAC) {
*percent = NAN;
*isOnAC = AC_ERROR;
CFArrayRef list = NULL;
CFTypeRef power_sources = IOPSCopyPowerSourcesInfo();
if (!power_sources)
goto cleanup;
list = IOPSCopyPowerSourcesList(power_sources);
if (!list)
goto cleanup;
double cap_current = 0.0;
double cap_max = 0.0;
/* Get the battery */
for (int i = 0, len = CFArrayGetCount(list); i < len; ++i) {
CFDictionaryRef power_source = IOPSGetPowerSourceDescription(power_sources, CFArrayGetValueAtIndex(list, i)); /* GET rule */
if (!power_source)
continue;
CFStringRef power_type = CFDictionaryGetValue(power_source, CFSTR(kIOPSTransportTypeKey)); /* GET rule */
if (kCFCompareEqualTo != CFStringCompare(power_type, CFSTR(kIOPSInternalType), 0))
continue;
/* Determine the AC state */
CFStringRef power_state = CFDictionaryGetValue(power_source, CFSTR(kIOPSPowerSourceStateKey));
if (*isOnAC != AC_PRESENT)
*isOnAC = (kCFCompareEqualTo == CFStringCompare(power_state, CFSTR(kIOPSACPowerValue), 0)) ? AC_PRESENT : AC_ABSENT;
/* Get the percentage remaining */
double tmp;
CFNumberGetValue(CFDictionaryGetValue(power_source, CFSTR(kIOPSCurrentCapacityKey)), kCFNumberDoubleType, &tmp);
cap_current += tmp;
CFNumberGetValue(CFDictionaryGetValue(power_source, CFSTR(kIOPSMaxCapacityKey)), kCFNumberDoubleType, &tmp);
cap_max += tmp;
}
if (cap_max > 0.0)
*percent = 100.0 * cap_current / cap_max;
cleanup:
if (list)
CFRelease(list);
if (power_sources)
CFRelease(power_sources);
}
void Platform_gettime_monotonic(uint64_t* msec) {
#ifdef HAVE_HOST_GET_CLOCK_SERVICE
clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
*msec = ((uint64_t)mts.tv_sec * 1000) + ((uint64_t)mts.tv_nsec / 1000000);
#else
Generic_gettime_monotonic(msec);
#endif
}