htop/freebsd/FreeBSDProcessList.c

521 lines
17 KiB
C

/*
htop - FreeBSDProcessList.c
(C) 2014 Hisham H. Muhammad
Released under the GNU GPL, see the COPYING file
in the source distribution for its full text.
*/
#include "ProcessList.h"
#include "FreeBSDProcessList.h"
#include "FreeBSDProcess.h"
#include "zfs/ZfsArcStats.h"
#include "zfs/openzfs_sysctl.h"
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <string.h>
/*{
#include "zfs/ZfsArcStats.h"
#include <kvm.h>
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/uio.h>
#include <sys/resource.h>
#define JAIL_ERRMSGLEN 1024
char jail_errmsg[JAIL_ERRMSGLEN];
typedef struct CPUData_ {
double userPercent;
double nicePercent;
double systemPercent;
double irqPercent;
double idlePercent;
double systemAllPercent;
} CPUData;
typedef struct FreeBSDProcessList_ {
ProcessList super;
kvm_t* kd;
unsigned long long int memWire;
unsigned long long int memActive;
unsigned long long int memInactive;
unsigned long long int memFree;
ZfsArcStats zfs;
CPUData* cpus;
unsigned long *cp_time_o;
unsigned long *cp_time_n;
unsigned long *cp_times_o;
unsigned long *cp_times_n;
} FreeBSDProcessList;
}*/
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int pageSize;
static int pageSizeKb;
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int MIB_vm_stats_vm_v_cache_count[4];
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
static int kernelFScale;
ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* pidWhiteList, uid_t userId) {
size_t len;
char errbuf[_POSIX2_LINE_MAX];
FreeBSDProcessList* fpl = xCalloc(1, sizeof(FreeBSDProcessList));
ProcessList* pl = (ProcessList*) fpl;
ProcessList_init(pl, Class(FreeBSDProcess), usersTable, pidWhiteList, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
len = sizeof(pageSize);
if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1) {
pageSize = PAGE_SIZE;
pageSizeKb = PAGE_SIZE_KB;
} else {
pageSizeKb = pageSize / ONE_K;
}
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
fpl->zfs.enabled = openzfs_sysctl_init();
openzfs_sysctl_updateArcStats(&fpl->zfs);
int smp = 0;
len = sizeof(smp);
if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) {
smp = 0;
}
int cpus = 1;
len = sizeof(cpus);
if (smp) {
int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0);
if (err) cpus = 1;
} else {
cpus = 1;
}
size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
fpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array);
fpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array);
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, fpl->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
fpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
fpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, fpl->cp_times_o, &len, NULL, 0);
}
pl->cpuCount = MAX(cpus, 1);
if (cpus == 1 ) {
fpl->cpus = xRealloc(fpl->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
fpl->cpus = xRealloc(fpl->cpus, (pl->cpuCount + 1) * sizeof(CPUData));
}
len = sizeof(kernelFScale);
if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
kernelFScale = 2048;
}
fpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (fpl->kd == NULL) {
errx(1, "kvm_open: %s", errbuf);
}
return pl;
}
void ProcessList_delete(ProcessList* this) {
const FreeBSDProcessList* fpl = (FreeBSDProcessList*) this;
if (fpl->kd) kvm_close(fpl->kd);
free(fpl->cp_time_o);
free(fpl->cp_time_n);
free(fpl->cp_times_o);
free(fpl->cp_times_n);
free(fpl->cpus);
ProcessList_done(this);
free(this);
}
static inline void FreeBSDProcessList_scanCPUTime(ProcessList* pl) {
const FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
int cpus = pl->cpuCount; // actual CPU count
int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
unsigned long *cp_time_n; // old clicks state
unsigned long *cp_time_o; // current clicks state
unsigned long cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_time, 2, fpl->cp_time_n, &sizeof_cp_time_array, NULL, 0);
// get rest of CPUs
if (cpus > 1) {
// on smp systems FreeBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in fpl->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_times, 2, fpl->cp_times_n, &sizeof_cp_time_array, NULL, 0);
}
for (int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = fpl->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = fpl->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) total_d = 1;
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(fpl->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used, but we store it anyway
cpuData->idlePercent = cp_time_p[CP_IDLE];
}
}
static inline void FreeBSDProcessList_scanMemoryInfo(ProcessList* pl) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
//
// with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free"
// and belongs into cache, but is reported as wired by kernel
//
// htop_used = active + (wired - arc)
// htop_cache = buffers + cache + arc
size_t len = sizeof(pl->totalMem);
//disabled for now, as it is always smaller than phycal amount of memory...
//...to avoid "where is my memory?" questions
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0);
//pl->totalMem *= pageSizeKb;
sysctl(MIB_hw_physmem, 2, &(pl->totalMem), &len, NULL, 0);
pl->totalMem /= 1024;
sysctl(MIB_vm_stats_vm_v_active_count, 4, &(fpl->memActive), &len, NULL, 0);
fpl->memActive *= pageSizeKb;
sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(fpl->memWire), &len, NULL, 0);
fpl->memWire *= pageSizeKb;
sysctl(MIB_vfs_bufspace, 2, &(pl->buffersMem), &len, NULL, 0);
pl->buffersMem /= 1024;
sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(pl->cachedMem), &len, NULL, 0);
pl->cachedMem *= pageSizeKb;
if (fpl->zfs.enabled) {
fpl->memWire -= fpl->zfs.size;
pl->cachedMem += fpl->zfs.size;
}
pl->usedMem = fpl->memActive + fpl->memWire;
//currently unused, same as with arc, custom meter perhaps
//sysctl(MIB_vm_stats_vm_v_inactive_count, 4, &(fpl->memInactive), &len, NULL, 0);
//sysctl(MIB_vm_stats_vm_v_free_count, 4, &(fpl->memFree), &len, NULL, 0);
//pl->freeMem = fpl->memInactive + fpl->memFree;
//pl->freeMem *= pageSizeKb;
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(fpl->kd, swap, sizeof(swap)/sizeof(swap[0]), 0);
pl->totalSwap = 0;
pl->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
pl->totalSwap += swap[i].ksw_total;
pl->usedSwap += swap[i].ksw_used;
}
pl->totalSwap *= pageSizeKb;
pl->usedSwap *= pageSizeKb;
pl->sharedMem = 0; // currently unused
}
char* FreeBSDProcessList_readProcessName(kvm_t* kd, struct kinfo_proc* kproc, int* basenameEnd) {
char** argv = kvm_getargv(kd, kproc, 0);
if (!argv) {
return xStrdup(kproc->ki_comm);
}
int len = 0;
for (int i = 0; argv[i]; i++) {
len += strlen(argv[i]) + 1;
}
char* comm = xMalloc(len);
char* at = comm;
*basenameEnd = 0;
for (int i = 0; argv[i]; i++) {
at = stpcpy(at, argv[i]);
if (!*basenameEnd) {
*basenameEnd = at - comm;
}
*at = ' ';
at++;
}
at--;
*at = '\0';
return comm;
}
char* FreeBSDProcessList_readJailName(struct kinfo_proc* kproc) {
int jid;
struct iovec jiov[6];
char* jname;
char jnamebuf[MAXHOSTNAMELEN];
if (kproc->ki_jid != 0 ){
memset(jnamebuf, 0, sizeof(jnamebuf));
*(const void **)&jiov[0].iov_base = "jid";
jiov[0].iov_len = sizeof("jid");
jiov[1].iov_base = &kproc->ki_jid;
jiov[1].iov_len = sizeof(kproc->ki_jid);
*(const void **)&jiov[2].iov_base = "name";
jiov[2].iov_len = sizeof("name");
jiov[3].iov_base = jnamebuf;
jiov[3].iov_len = sizeof(jnamebuf);
*(const void **)&jiov[4].iov_base = "errmsg";
jiov[4].iov_len = sizeof("errmsg");
jiov[5].iov_base = jail_errmsg;
jiov[5].iov_len = JAIL_ERRMSGLEN;
jail_errmsg[0] = 0;
jid = jail_get(jiov, 6, 0);
if (jid < 0) {
if (!jail_errmsg[0])
xSnprintf(jail_errmsg, JAIL_ERRMSGLEN, "jail_get: %s", strerror(errno));
return NULL;
} else if (jid == kproc->ki_jid) {
jname = xStrdup(jnamebuf);
if (jname == NULL)
strerror_r(errno, jail_errmsg, JAIL_ERRMSGLEN);
return jname;
} else {
return NULL;
}
} else {
jnamebuf[0]='-';
jnamebuf[1]='\0';
jname = xStrdup(jnamebuf);
}
return jname;
}
void ProcessList_goThroughEntries(ProcessList* this) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) this;
Settings* settings = this->settings;
bool hideKernelThreads = settings->hideKernelThreads;
bool hideUserlandThreads = settings->hideUserlandThreads;
openzfs_sysctl_updateArcStats(&fpl->zfs);
FreeBSDProcessList_scanMemoryInfo(this);
FreeBSDProcessList_scanCPUTime(this);
int cpus = this->cpuCount;
int count = 0;
struct kinfo_proc* kprocs = kvm_getprocs(fpl->kd, KERN_PROC_PROC, 0, &count);
for (int i = 0; i < count; i++) {
struct kinfo_proc* kproc = &kprocs[i];
bool preExisting = false;
bool isIdleProcess = false;
Process* proc = ProcessList_getProcess(this, kproc->ki_pid, &preExisting, (Process_New) FreeBSDProcess_new);
FreeBSDProcess* fp = (FreeBSDProcess*) proc;
proc->show = ! ((hideKernelThreads && Process_isKernelThread(fp)) || (hideUserlandThreads && Process_isUserlandThread(proc)));
if (!preExisting) {
fp->jid = kproc->ki_jid;
proc->pid = kproc->ki_pid;
if ( ! ((kproc->ki_pid == 0) || (kproc->ki_pid == 1) ) && kproc->ki_flag & P_SYSTEM)
fp->kernel = 1;
else
fp->kernel = 0;
proc->ppid = kproc->ki_ppid;
proc->tpgid = kproc->ki_tpgid;
proc->tgid = kproc->ki_pid;
proc->session = kproc->ki_sid;
proc->tty_nr = kproc->ki_tdev;
proc->pgrp = kproc->ki_pgid;
proc->st_uid = kproc->ki_uid;
proc->starttime_ctime = kproc->ki_start.tv_sec;
proc->user = UsersTable_getRef(this->usersTable, proc->st_uid);
ProcessList_add((ProcessList*)this, proc);
proc->comm = FreeBSDProcessList_readProcessName(fpl->kd, kproc, &proc->basenameOffset);
fp->jname = FreeBSDProcessList_readJailName(kproc);
} else {
if(fp->jid != kproc->ki_jid) {
// process can enter jail anytime
fp->jid = kproc->ki_jid;
free(fp->jname);
fp->jname = FreeBSDProcessList_readJailName(kproc);
}
if (proc->ppid != kproc->ki_ppid) {
// if there are reapers in the system, process can get reparented anytime
proc->ppid = kproc->ki_ppid;
}
if(proc->st_uid != kproc->ki_uid) {
// some processes change users (eg. to lower privs)
proc->st_uid = kproc->ki_uid;
proc->user = UsersTable_getRef(this->usersTable, proc->st_uid);
}
if (settings->updateProcessNames) {
free(proc->comm);
proc->comm = FreeBSDProcessList_readProcessName(fpl->kd, kproc, &proc->basenameOffset);
}
}
// from FreeBSD source /src/usr.bin/top/machine.c
proc->m_size = kproc->ki_size / 1024 / pageSizeKb;
proc->m_resident = kproc->ki_rssize;
proc->percent_mem = (proc->m_resident * PAGE_SIZE_KB) / (double)(this->totalMem) * 100.0;
proc->nlwp = kproc->ki_numthreads;
proc->time = (kproc->ki_runtime + 5000) / 10000;
proc->percent_cpu = 100.0 * ((double)kproc->ki_pctcpu / (double)kernelFScale);
proc->percent_mem = 100.0 * (proc->m_resident * PAGE_SIZE_KB) / (double)(this->totalMem);
if (proc->percent_cpu > 0.1) {
// system idle process should own all CPU time left regardless of CPU count
if ( strcmp("idle", kproc->ki_comm) == 0 ) {
isIdleProcess = true;
}
}
proc->priority = kproc->ki_pri.pri_level - PZERO;
if (strcmp("intr", kproc->ki_comm) == 0 && kproc->ki_flag & P_SYSTEM) {
proc->nice = 0; //@etosan: intr kernel process (not thread) has weird nice value
} else if (kproc->ki_pri.pri_class == PRI_TIMESHARE) {
proc->nice = kproc->ki_nice - NZERO;
} else if (PRI_IS_REALTIME(kproc->ki_pri.pri_class)) {
proc->nice = PRIO_MIN - 1 - (PRI_MAX_REALTIME - kproc->ki_pri.pri_level);
} else {
proc->nice = PRIO_MAX + 1 + kproc->ki_pri.pri_level - PRI_MIN_IDLE;
}
switch (kproc->ki_stat) {
case SIDL: proc->state = 'I'; break;
case SRUN: proc->state = 'R'; break;
case SSLEEP: proc->state = 'S'; break;
case SSTOP: proc->state = 'T'; break;
case SZOMB: proc->state = 'Z'; break;
case SWAIT: proc->state = 'D'; break;
case SLOCK: proc->state = 'L'; break;
default: proc->state = '?';
}
if (Process_isKernelThread(fp)) {
this->kernelThreads++;
}
this->totalTasks++;
if (proc->state == 'R')
this->runningTasks++;
proc->updated = true;
}
}