htop/freebsd/FreeBSDProcessList.c

619 lines
20 KiB
C

/*
htop - FreeBSDProcessList.c
(C) 2014 Hisham H. Muhammad
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "config.h" // IWYU pragma: keep
#include "freebsd/FreeBSDProcessList.h"
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <sys/_iovec.h>
#include <sys/errno.h>
#include <sys/param.h> // needs to be included before <sys/jail.h> for MAXPATHLEN
#include <sys/jail.h>
#include <sys/priority.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include "CRT.h"
#include "Compat.h"
#include "FreeBSDProcess.h"
#include "Macros.h"
#include "Object.h"
#include "Process.h"
#include "ProcessList.h"
#include "Settings.h"
#include "XUtils.h"
#include "generic/openzfs_sysctl.h"
#include "zfs/ZfsArcStats.h"
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int pageSize;
static int pageSizeKb;
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int MIB_vm_stats_vm_v_cache_count[4];
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
static int kernelFScale;
ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* DynamicColumns, Hashtable* pidMatchList, uid_t userId) {
size_t len;
char errbuf[_POSIX2_LINE_MAX];
FreeBSDProcessList* fpl = xCalloc(1, sizeof(FreeBSDProcessList));
ProcessList* pl = (ProcessList*) fpl;
ProcessList_init(pl, Class(FreeBSDProcess), usersTable, dynamicMeters, DynamicColumns, pidMatchList, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
len = sizeof(pageSize);
if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1)
CRT_fatalError("Cannot get pagesize by sysctl");
pageSizeKb = pageSize / ONE_K;
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
openzfs_sysctl_init(&fpl->zfs);
openzfs_sysctl_updateArcStats(&fpl->zfs);
int smp = 0;
len = sizeof(smp);
if (sysctlbyname("kern.smp.active", &smp, &len, NULL, 0) != 0 || len != sizeof(smp)) {
smp = 0;
}
int cpus = 1;
len = sizeof(cpus);
if (smp) {
int err = sysctlbyname("kern.smp.cpus", &cpus, &len, NULL, 0);
if (err) {
cpus = 1;
}
} else {
cpus = 1;
}
size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
fpl->cp_time_o = xCalloc(CPUSTATES, sizeof(unsigned long));
fpl->cp_time_n = xCalloc(CPUSTATES, sizeof(unsigned long));
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, fpl->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
fpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
fpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, fpl->cp_times_o, &len, NULL, 0);
}
pl->existingCPUs = MAXIMUM(cpus, 1);
// TODO: support offline CPUs and hot swapping
pl->activeCPUs = pl->existingCPUs;
if (cpus == 1 ) {
fpl->cpus = xRealloc(fpl->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
fpl->cpus = xRealloc(fpl->cpus, (pl->existingCPUs + 1) * sizeof(CPUData));
}
len = sizeof(kernelFScale);
if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
kernelFScale = 2048;
}
fpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (fpl->kd == NULL) {
CRT_fatalError("kvm_openfiles() failed");
}
return pl;
}
void ProcessList_delete(ProcessList* this) {
const FreeBSDProcessList* fpl = (FreeBSDProcessList*) this;
if (fpl->kd) {
kvm_close(fpl->kd);
}
free(fpl->cp_time_o);
free(fpl->cp_time_n);
free(fpl->cp_times_o);
free(fpl->cp_times_n);
free(fpl->cpus);
ProcessList_done(this);
free(this);
}
static inline void FreeBSDProcessList_scanCPU(ProcessList* pl) {
const FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
unsigned int cpus = pl->existingCPUs; // actual CPU count
unsigned int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
unsigned long* cp_time_n; // old clicks state
unsigned long* cp_time_o; // current clicks state
unsigned long cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_time, 2, fpl->cp_time_n, &sizeof_cp_time_array, NULL, 0);
// get rest of CPUs
if (cpus > 1) {
// on smp systems FreeBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in fpl->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_times, 2, fpl->cp_times_n, &sizeof_cp_time_array, NULL, 0);
}
for (unsigned int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = fpl->cp_time_n;
cp_time_o = fpl->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = fpl->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = fpl->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) {
total_d = 1;
}
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(fpl->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used
//cpuData->idlePercent = cp_time_p[CP_IDLE];
cpuData->temperature = NAN;
cpuData->frequency = NAN;
const int coreId = (cpus == 1) ? 0 : ((int)i - 1);
if (coreId < 0)
continue;
// TODO: test with hyperthreading and multi-cpu systems
if (pl->settings->showCPUTemperature) {
int temperature;
size_t len = sizeof(temperature);
char mibBuffer[32];
xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.temperature", coreId);
int r = sysctlbyname(mibBuffer, &temperature, &len, NULL, 0);
if (r == 0)
cpuData->temperature = (double)(temperature - 2732) / 10.0; // convert from deci-Kelvin to Celsius
}
// TODO: test with hyperthreading and multi-cpu systems
if (pl->settings->showCPUFrequency) {
int frequency;
size_t len = sizeof(frequency);
char mibBuffer[32];
xSnprintf(mibBuffer, sizeof(mibBuffer), "dev.cpu.%d.freq", coreId);
int r = sysctlbyname(mibBuffer, &frequency, &len, NULL, 0);
if (r == 0)
cpuData->frequency = frequency; // keep in MHz
}
}
// calculate max temperature and avg frequency for average meter and
// propagate frequency to all cores if only supplied for CPU 0
if (cpus > 1) {
if (pl->settings->showCPUTemperature) {
double maxTemp = NAN;
for (unsigned int i = 1; i < maxcpu; i++) {
const double coreTemp = fpl->cpus[i].temperature;
if (isnan(coreTemp))
continue;
maxTemp = MAXIMUM(maxTemp, coreTemp);
}
fpl->cpus[0].temperature = maxTemp;
}
if (pl->settings->showCPUFrequency) {
const double coreZeroFreq = fpl->cpus[1].frequency;
double freqSum = coreZeroFreq;
if (!isnan(coreZeroFreq)) {
for (unsigned int i = 2; i < maxcpu; i++) {
if (isnan(fpl->cpus[i].frequency))
fpl->cpus[i].frequency = coreZeroFreq;
freqSum += fpl->cpus[i].frequency;
}
fpl->cpus[0].frequency = freqSum / (maxcpu - 1);
}
}
}
}
static inline void FreeBSDProcessList_scanMemoryInfo(ProcessList* pl) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) pl;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
//
// with ZFS ARC situation becomes bit muddled, as ARC behaves like "user_free"
// and belongs into cache, but is reported as wired by kernel
//
// htop_used = active + (wired - arc)
// htop_cache = buffers + cache + arc
u_long totalMem;
u_int memActive, memWire, cachedMem;
long buffersMem;
size_t len;
//disabled for now, as it is always smaller than phycal amount of memory...
//...to avoid "where is my memory?" questions
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0);
//pl->totalMem *= pageSizeKb;
len = sizeof(totalMem);
sysctl(MIB_hw_physmem, 2, &(totalMem), &len, NULL, 0);
totalMem /= 1024;
pl->totalMem = totalMem;
len = sizeof(memActive);
sysctl(MIB_vm_stats_vm_v_active_count, 4, &(memActive), &len, NULL, 0);
memActive *= pageSizeKb;
fpl->memActive = memActive;
len = sizeof(memWire);
sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(memWire), &len, NULL, 0);
memWire *= pageSizeKb;
fpl->memWire = memWire;
len = sizeof(buffersMem);
sysctl(MIB_vfs_bufspace, 2, &(buffersMem), &len, NULL, 0);
buffersMem /= 1024;
pl->buffersMem = buffersMem;
len = sizeof(cachedMem);
sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(cachedMem), &len, NULL, 0);
cachedMem *= pageSizeKb;
pl->cachedMem = cachedMem;
if (fpl->zfs.enabled) {
fpl->memWire -= fpl->zfs.size;
pl->cachedMem += fpl->zfs.size;
}
pl->usedMem = fpl->memActive + fpl->memWire;
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(fpl->kd, swap, ARRAYSIZE(swap), 0);
pl->totalSwap = 0;
pl->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
pl->totalSwap += swap[i].ksw_total;
pl->usedSwap += swap[i].ksw_used;
}
pl->totalSwap *= pageSizeKb;
pl->usedSwap *= pageSizeKb;
}
static void FreeBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) {
if (Process_isKernelThread(proc)) {
Process_updateExe(proc, NULL);
return;
}
const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, kproc->ki_pid };
char buffer[2048];
size_t size = sizeof(buffer);
if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) {
Process_updateExe(proc, NULL);
return;
}
Process_updateExe(proc, buffer);
}
static void FreeBSDProcessList_updateCwd(const struct kinfo_proc* kproc, Process* proc) {
const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_CWD, kproc->ki_pid };
char buffer[2048];
size_t size = sizeof(buffer);
if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) {
free(proc->procCwd);
proc->procCwd = NULL;
return;
}
/* Kernel threads return an empty buffer */
if (buffer[0] == '\0') {
free(proc->procCwd);
proc->procCwd = NULL;
return;
}
free_and_xStrdup(&proc->procCwd, buffer);
}
static void FreeBSDProcessList_updateProcessName(kvm_t* kd, const struct kinfo_proc* kproc, Process* proc) {
Process_updateComm(proc, kproc->ki_comm);
char** argv = kvm_getargv(kd, kproc, 0);
if (!argv || !argv[0]) {
Process_updateCmdline(proc, kproc->ki_comm, 0, strlen(kproc->ki_comm));
return;
}
size_t len = 0;
for (int i = 0; argv[i]; i++) {
len += strlen(argv[i]) + 1;
}
char* cmdline = xMalloc(len);
char* at = cmdline;
int end = 0;
for (int i = 0; argv[i]; i++) {
at = stpcpy(at, argv[i]);
if (end == 0) {
end = at - cmdline;
}
*at++ = ' ';
}
at--;
*at = '\0';
Process_updateCmdline(proc, cmdline, 0, end);
free(cmdline);
}
static char* FreeBSDProcessList_readJailName(const struct kinfo_proc* kproc) {
if (kproc->ki_jid == 0)
return xStrdup("-");
char jnamebuf[MAXHOSTNAMELEN] = {0};
struct iovec jiov[4];
IGNORE_WCASTQUAL_BEGIN
*(const void**)&jiov[0].iov_base = "jid";
jiov[0].iov_len = sizeof("jid");
jiov[1].iov_base = (void*) &kproc->ki_jid;
jiov[1].iov_len = sizeof(kproc->ki_jid);
*(const void**)&jiov[2].iov_base = "name";
jiov[2].iov_len = sizeof("name");
jiov[3].iov_base = jnamebuf;
jiov[3].iov_len = sizeof(jnamebuf);
IGNORE_WCASTQUAL_END
int jid = jail_get(jiov, 4, 0);
if (jid == kproc->ki_jid)
return xStrdup(jnamebuf);
return NULL;
}
void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) {
FreeBSDProcessList* fpl = (FreeBSDProcessList*) super;
const Settings* settings = super->settings;
bool hideKernelThreads = settings->hideKernelThreads;
bool hideUserlandThreads = settings->hideUserlandThreads;
openzfs_sysctl_updateArcStats(&fpl->zfs);
FreeBSDProcessList_scanMemoryInfo(super);
FreeBSDProcessList_scanCPU(super);
// in pause mode only gather global data for meters (CPU/memory/...)
if (pauseProcessUpdate) {
return;
}
int count = 0;
const struct kinfo_proc* kprocs = kvm_getprocs(fpl->kd, KERN_PROC_PROC, 0, &count);
for (int i = 0; i < count; i++) {
const struct kinfo_proc* kproc = &kprocs[i];
bool preExisting = false;
Process* proc = ProcessList_getProcess(super, kproc->ki_pid, &preExisting, FreeBSDProcess_new);
FreeBSDProcess* fp = (FreeBSDProcess*) proc;
if (!preExisting) {
fp->jid = kproc->ki_jid;
proc->pid = kproc->ki_pid;
proc->isKernelThread = kproc->ki_pid != 1 && (kproc->ki_flag & P_SYSTEM);
proc->isUserlandThread = false;
proc->ppid = kproc->ki_ppid;
proc->tpgid = kproc->ki_tpgid;
proc->tgid = kproc->ki_pid;
proc->session = kproc->ki_sid;
proc->pgrp = kproc->ki_pgid;
proc->st_uid = kproc->ki_uid;
proc->starttime_ctime = kproc->ki_start.tv_sec;
if (proc->starttime_ctime < 0) {
proc->starttime_ctime = super->realtimeMs / 1000;
}
Process_fillStarttimeBuffer(proc);
proc->user = UsersTable_getRef(super->usersTable, proc->st_uid);
ProcessList_add(super, proc);
FreeBSDProcessList_updateExe(kproc, proc);
FreeBSDProcessList_updateProcessName(fpl->kd, kproc, proc);
if (settings->ss->flags & PROCESS_FLAG_CWD) {
FreeBSDProcessList_updateCwd(kproc, proc);
}
fp->jname = FreeBSDProcessList_readJailName(kproc);
proc->tty_nr = kproc->ki_tdev;
const char* name = (kproc->ki_tdev != NODEV) ? devname(kproc->ki_tdev, S_IFCHR) : NULL;
if (!name) {
free(proc->tty_name);
proc->tty_name = NULL;
} else {
free_and_xStrdup(&proc->tty_name, name);
}
} else {
if (fp->jid != kproc->ki_jid) {
// process can enter jail anytime
fp->jid = kproc->ki_jid;
free(fp->jname);
fp->jname = FreeBSDProcessList_readJailName(kproc);
}
// if there are reapers in the system, process can get reparented anytime
proc->ppid = kproc->ki_ppid;
if (proc->st_uid != kproc->ki_uid) {
// some processes change users (eg. to lower privs)
proc->st_uid = kproc->ki_uid;
proc->user = UsersTable_getRef(super->usersTable, proc->st_uid);
}
if (settings->updateProcessNames) {
FreeBSDProcessList_updateProcessName(fpl->kd, kproc, proc);
}
}
free_and_xStrdup(&fp->emul, kproc->ki_emul);
// from FreeBSD source /src/usr.bin/top/machine.c
proc->m_virt = kproc->ki_size / ONE_K;
proc->m_resident = kproc->ki_rssize * pageSizeKb;
proc->nlwp = kproc->ki_numthreads;
proc->time = (kproc->ki_runtime + 5000) / 10000;
proc->percent_cpu = 100.0 * ((double)kproc->ki_pctcpu / (double)kernelFScale);
proc->percent_mem = 100.0 * proc->m_resident / (double)(super->totalMem);
Process_updateCPUFieldWidths(proc->percent_cpu);
if (kproc->ki_stat == SRUN && kproc->ki_oncpu != NOCPU) {
proc->processor = kproc->ki_oncpu;
} else {
proc->processor = kproc->ki_lastcpu;
}
proc->majflt = kproc->ki_cow;
proc->priority = kproc->ki_pri.pri_level - PZERO;
if (String_eq("intr", kproc->ki_comm) && (kproc->ki_flag & P_SYSTEM)) {
proc->nice = 0; //@etosan: intr kernel process (not thread) has weird nice value
} else if (kproc->ki_pri.pri_class == PRI_TIMESHARE) {
proc->nice = kproc->ki_nice - NZERO;
} else if (PRI_IS_REALTIME(kproc->ki_pri.pri_class)) {
proc->nice = PRIO_MIN - 1 - (PRI_MAX_REALTIME - kproc->ki_pri.pri_level);
} else {
proc->nice = PRIO_MAX + 1 + kproc->ki_pri.pri_level - PRI_MIN_IDLE;
}
/* Taken from: https://github.com/freebsd/freebsd-src/blob/1ad2d87778970582854082bcedd2df0394fd4933/sys/sys/proc.h#L851 */
switch (kproc->ki_stat) {
case SIDL: proc->state = IDLE; break;
case SRUN: proc->state = RUNNING; break;
case SSLEEP: proc->state = SLEEPING; break;
case SSTOP: proc->state = STOPPED; break;
case SZOMB: proc->state = ZOMBIE; break;
case SWAIT: proc->state = WAITING; break;
case SLOCK: proc->state = BLOCKED; break;
default: proc->state = UNKNOWN;
}
if (Process_isKernelThread(proc))
super->kernelThreads++;
proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc)));
super->totalTasks++;
if (proc->state == RUNNING)
super->runningTasks++;
proc->updated = true;
}
}
bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) {
assert(id < super->existingCPUs);
// TODO: support offline CPUs and hot swapping
(void) super; (void) id;
return true;
}