htop/dragonflybsd/DragonFlyBSDProcessList.c

611 lines
20 KiB
C

/*
htop - DragonFlyBSDProcessList.c
(C) 2014 Hisham H. Muhammad
(C) 2017 Diederik de Groot
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/
#include "dragonflybsd/DragonFlyBSDProcessList.h"
#include <fcntl.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <sys/param.h>
#include "CRT.h"
#include "Macros.h"
#include "dragonflybsd/DragonFlyBSDProcess.h"
static int MIB_hw_physmem[2];
static int MIB_vm_stats_vm_v_page_count[4];
static int pageSize;
static int pageSizeKb;
static int MIB_vm_stats_vm_v_wire_count[4];
static int MIB_vm_stats_vm_v_active_count[4];
static int MIB_vm_stats_vm_v_cache_count[4];
static int MIB_vm_stats_vm_v_inactive_count[4];
static int MIB_vm_stats_vm_v_free_count[4];
static int MIB_vfs_bufspace[2];
static int MIB_kern_cp_time[2];
static int MIB_kern_cp_times[2];
static int kernelFScale;
ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) {
size_t len;
char errbuf[_POSIX2_LINE_MAX];
DragonFlyBSDProcessList* dfpl = xCalloc(1, sizeof(DragonFlyBSDProcessList));
ProcessList* pl = (ProcessList*) dfpl;
ProcessList_init(pl, Class(DragonFlyBSDProcess), usersTable, dynamicMeters, dynamicColumns, pidMatchList, userId);
// physical memory in system: hw.physmem
// physical page size: hw.pagesize
// usable pagesize : vm.stats.vm.v_page_size
len = 2; sysctlnametomib("hw.physmem", MIB_hw_physmem, &len);
len = sizeof(pageSize);
if (sysctlbyname("vm.stats.vm.v_page_size", &pageSize, &len, NULL, 0) == -1)
CRT_fatalError("Cannot get pagesize by sysctl");
pageSizeKb = pageSize / ONE_K;
// usable page count vm.stats.vm.v_page_count
// actually usable memory : vm.stats.vm.v_page_count * vm.stats.vm.v_page_size
len = 4; sysctlnametomib("vm.stats.vm.v_page_count", MIB_vm_stats_vm_v_page_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_wire_count", MIB_vm_stats_vm_v_wire_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_active_count", MIB_vm_stats_vm_v_active_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_cache_count", MIB_vm_stats_vm_v_cache_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_inactive_count", MIB_vm_stats_vm_v_inactive_count, &len);
len = 4; sysctlnametomib("vm.stats.vm.v_free_count", MIB_vm_stats_vm_v_free_count, &len);
len = 2; sysctlnametomib("vfs.bufspace", MIB_vfs_bufspace, &len);
int cpus = 1;
len = sizeof(cpus);
if (sysctlbyname("hw.ncpu", &cpus, &len, NULL, 0) != 0) {
cpus = 1;
}
size_t sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
len = 2; sysctlnametomib("kern.cp_time", MIB_kern_cp_time, &len);
dfpl->cp_time_o = xCalloc(cpus, sizeof_cp_time_array);
dfpl->cp_time_n = xCalloc(cpus, sizeof_cp_time_array);
len = sizeof_cp_time_array;
// fetch initial single (or average) CPU clicks from kernel
sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_o, &len, NULL, 0);
// on smp box, fetch rest of initial CPU's clicks
if (cpus > 1) {
len = 2; sysctlnametomib("kern.cp_times", MIB_kern_cp_times, &len);
dfpl->cp_times_o = xCalloc(cpus, sizeof_cp_time_array);
dfpl->cp_times_n = xCalloc(cpus, sizeof_cp_time_array);
len = cpus * sizeof_cp_time_array;
sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_o, &len, NULL, 0);
}
pl->existingCPUs = MAXIMUM(cpus, 1);
// TODO: support offline CPUs and hot swapping
pl->activeCPUs = pl->existingCPUs;
if (cpus == 1 ) {
dfpl->cpus = xRealloc(dfpl->cpus, sizeof(CPUData));
} else {
// on smp we need CPUs + 1 to store averages too (as kernel kindly provides that as well)
dfpl->cpus = xRealloc(dfpl->cpus, (pl->existingCPUs + 1) * sizeof(CPUData));
}
len = sizeof(kernelFScale);
if (sysctlbyname("kern.fscale", &kernelFScale, &len, NULL, 0) == -1) {
//sane default for kernel provided CPU percentage scaling, at least on x86 machines, in case this sysctl call failed
kernelFScale = 2048;
}
dfpl->kd = kvm_openfiles(NULL, "/dev/null", NULL, 0, errbuf);
if (dfpl->kd == NULL) {
CRT_fatalError("kvm_openfiles() failed");
}
return pl;
}
void ProcessList_delete(ProcessList* this) {
const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) this;
if (dfpl->kd) {
kvm_close(dfpl->kd);
}
if (dfpl->jails) {
Hashtable_delete(dfpl->jails);
}
free(dfpl->cp_time_o);
free(dfpl->cp_time_n);
free(dfpl->cp_times_o);
free(dfpl->cp_times_n);
free(dfpl->cpus);
ProcessList_done(this);
free(this);
}
static inline void DragonFlyBSDProcessList_scanCPUTime(ProcessList* pl) {
const DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl;
unsigned int cpus = pl->existingCPUs; // actual CPU count
unsigned int maxcpu = cpus; // max iteration (in case we have average + smp)
int cp_times_offset;
assert(cpus > 0);
size_t sizeof_cp_time_array;
unsigned long* cp_time_n; // old clicks state
unsigned long* cp_time_o; // current clicks state
unsigned long cp_time_d[CPUSTATES];
double cp_time_p[CPUSTATES];
// get averages or single CPU clicks
sizeof_cp_time_array = sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_time, 2, dfpl->cp_time_n, &sizeof_cp_time_array, NULL, 0);
// get rest of CPUs
if (cpus > 1) {
// on smp systems DragonFlyBSD kernel concats all CPU states into one long array in
// kern.cp_times sysctl OID
// we store averages in dfpl->cpus[0], and actual cores after that
maxcpu = cpus + 1;
sizeof_cp_time_array = cpus * sizeof(unsigned long) * CPUSTATES;
sysctl(MIB_kern_cp_times, 2, dfpl->cp_times_n, &sizeof_cp_time_array, NULL, 0);
}
for (unsigned int i = 0; i < maxcpu; i++) {
if (cpus == 1) {
// single CPU box
cp_time_n = dfpl->cp_time_n;
cp_time_o = dfpl->cp_time_o;
} else {
if (i == 0 ) {
// average
cp_time_n = dfpl->cp_time_n;
cp_time_o = dfpl->cp_time_o;
} else {
// specific smp cores
cp_times_offset = i - 1;
cp_time_n = dfpl->cp_times_n + (cp_times_offset * CPUSTATES);
cp_time_o = dfpl->cp_times_o + (cp_times_offset * CPUSTATES);
}
}
// diff old vs new
unsigned long long total_o = 0;
unsigned long long total_n = 0;
unsigned long long total_d = 0;
for (int s = 0; s < CPUSTATES; s++) {
cp_time_d[s] = cp_time_n[s] - cp_time_o[s];
total_o += cp_time_o[s];
total_n += cp_time_n[s];
}
// totals
total_d = total_n - total_o;
if (total_d < 1 ) {
total_d = 1;
}
// save current state as old and calc percentages
for (int s = 0; s < CPUSTATES; ++s) {
cp_time_o[s] = cp_time_n[s];
cp_time_p[s] = ((double)cp_time_d[s]) / ((double)total_d) * 100;
}
CPUData* cpuData = &(dfpl->cpus[i]);
cpuData->userPercent = cp_time_p[CP_USER];
cpuData->nicePercent = cp_time_p[CP_NICE];
cpuData->systemPercent = cp_time_p[CP_SYS];
cpuData->irqPercent = cp_time_p[CP_INTR];
cpuData->systemAllPercent = cp_time_p[CP_SYS] + cp_time_p[CP_INTR];
// this one is not really used, but we store it anyway
cpuData->idlePercent = cp_time_p[CP_IDLE];
}
}
static inline void DragonFlyBSDProcessList_scanMemoryInfo(ProcessList* pl) {
DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) pl;
// @etosan:
// memory counter relationships seem to be these:
// total = active + wired + inactive + cache + free
// htop_used (unavail to anybody) = active + wired
// htop_cache (for cache meter) = buffers + cache
// user_free (avail to procs) = buffers + inactive + cache + free
size_t len = sizeof(pl->totalMem);
//disabled for now, as it is always smaller than phycal amount of memory...
//...to avoid "where is my memory?" questions
//sysctl(MIB_vm_stats_vm_v_page_count, 4, &(pl->totalMem), &len, NULL, 0);
//pl->totalMem *= pageSizeKb;
sysctl(MIB_hw_physmem, 2, &(pl->totalMem), &len, NULL, 0);
pl->totalMem /= 1024;
sysctl(MIB_vm_stats_vm_v_active_count, 4, &(dfpl->memActive), &len, NULL, 0);
dfpl->memActive *= pageSizeKb;
sysctl(MIB_vm_stats_vm_v_wire_count, 4, &(dfpl->memWire), &len, NULL, 0);
dfpl->memWire *= pageSizeKb;
sysctl(MIB_vfs_bufspace, 2, &(pl->buffersMem), &len, NULL, 0);
pl->buffersMem /= 1024;
sysctl(MIB_vm_stats_vm_v_cache_count, 4, &(pl->cachedMem), &len, NULL, 0);
pl->cachedMem *= pageSizeKb;
pl->usedMem = dfpl->memActive + dfpl->memWire;
struct kvm_swap swap[16];
int nswap = kvm_getswapinfo(dfpl->kd, swap, ARRAYSIZE(swap), 0);
pl->totalSwap = 0;
pl->usedSwap = 0;
for (int i = 0; i < nswap; i++) {
pl->totalSwap += swap[i].ksw_total;
pl->usedSwap += swap[i].ksw_used;
}
pl->totalSwap *= pageSizeKb;
pl->usedSwap *= pageSizeKb;
}
//static void DragonFlyBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) {
// const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, kproc->kp_pid };
// char buffer[2048];
// size_t size = sizeof(buffer);
// if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) {
// Process_updateExe(proc, NULL);
// return;
// }
//
// /* Kernel threads return an empty buffer */
// if (buffer[0] == '\0') {
// Process_updateExe(proc, NULL);
// return;
// }
//
// Process_updateExe(proc, buffer);
//}
static void DragonFlyBSDProcessList_updateExe(const struct kinfo_proc* kproc, Process* proc) {
if (Process_isKernelThread(proc))
return;
char path[32];
xSnprintf(path, sizeof(path), "/proc/%d/file", kproc->kp_pid);
char target[PATH_MAX];
ssize_t ret = readlink(path, target, sizeof(target) - 1);
if (ret <= 0)
return;
target[ret] = '\0';
Process_updateExe(proc, target);
}
static void DragonFlyBSDProcessList_updateCwd(const struct kinfo_proc* kproc, Process* proc) {
const int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_CWD, kproc->kp_pid };
char buffer[2048];
size_t size = sizeof(buffer);
if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) {
free(proc->procCwd);
proc->procCwd = NULL;
return;
}
/* Kernel threads return an empty buffer */
if (buffer[0] == '\0') {
free(proc->procCwd);
proc->procCwd = NULL;
return;
}
free_and_xStrdup(&proc->procCwd, buffer);
}
static void DragonFlyBSDProcessList_updateProcessName(kvm_t* kd, const struct kinfo_proc* kproc, Process* proc) {
Process_updateComm(proc, kproc->kp_comm);
char** argv = kvm_getargv(kd, kproc, 0);
if (!argv || !argv[0]) {
Process_updateCmdline(proc, kproc->kp_comm, 0, strlen(kproc->kp_comm));
return;
}
size_t len = 0;
for (int i = 0; argv[i]; i++) {
len += strlen(argv[i]) + 1;
}
char* cmdline = xMalloc(len);
char* at = cmdline;
int end = 0;
for (int i = 0; argv[i]; i++) {
at = stpcpy(at, argv[i]);
if (end == 0) {
end = at - cmdline;
}
*at++ = ' ';
}
at--;
*at = '\0';
Process_updateCmdline(proc, cmdline, 0, end);
}
static inline void DragonFlyBSDProcessList_scanJails(DragonFlyBSDProcessList* dfpl) {
size_t len;
char* jls; /* Jail list */
char* curpos;
char* nextpos;
if (sysctlbyname("jail.list", NULL, &len, NULL, 0) == -1) {
CRT_fatalError("initial sysctlbyname / jail.list failed");
}
retry:
if (len == 0)
return;
jls = xMalloc(len);
if (sysctlbyname("jail.list", jls, &len, NULL, 0) == -1) {
if (errno == ENOMEM) {
free(jls);
goto retry;
}
CRT_fatalError("sysctlbyname / jail.list failed");
}
if (dfpl->jails) {
Hashtable_delete(dfpl->jails);
}
dfpl->jails = Hashtable_new(20, true);
curpos = jls;
while (curpos) {
int jailid;
char* str_hostname;
nextpos = strchr(curpos, '\n');
if (nextpos) {
*nextpos++ = 0;
}
jailid = atoi(strtok(curpos, " "));
str_hostname = strtok(NULL, " ");
char* jname = (char*) (Hashtable_get(dfpl->jails, jailid));
if (jname == NULL) {
jname = xStrdup(str_hostname);
Hashtable_put(dfpl->jails, jailid, jname);
}
curpos = nextpos;
}
free(jls);
}
static char* DragonFlyBSDProcessList_readJailName(DragonFlyBSDProcessList* dfpl, int jailid) {
char* hostname;
char* jname;
if (jailid != 0 && dfpl->jails && (hostname = (char*)Hashtable_get(dfpl->jails, jailid))) {
jname = xStrdup(hostname);
} else {
jname = xStrdup("-");
}
return jname;
}
void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) {
DragonFlyBSDProcessList* dfpl = (DragonFlyBSDProcessList*) super;
const Settings* settings = super->settings;
bool hideKernelThreads = settings->hideKernelThreads;
bool hideUserlandThreads = settings->hideUserlandThreads;
DragonFlyBSDProcessList_scanMemoryInfo(super);
DragonFlyBSDProcessList_scanCPUTime(super);
DragonFlyBSDProcessList_scanJails(dfpl);
// in pause mode only gather global data for meters (CPU/memory/...)
if (pauseProcessUpdate) {
return;
}
int count = 0;
const struct kinfo_proc* kprocs = kvm_getprocs(dfpl->kd, KERN_PROC_ALL | (!hideUserlandThreads ? KERN_PROC_FLAG_LWP : 0), 0, &count);
for (int i = 0; i < count; i++) {
const struct kinfo_proc* kproc = &kprocs[i];
bool preExisting = false;
bool ATTR_UNUSED isIdleProcess = false;
// note: dragonflybsd kernel processes all have the same pid, so we misuse the kernel thread address to give them a unique identifier
Process* proc = ProcessList_getProcess(super, kproc->kp_ktaddr ? (pid_t)kproc->kp_ktaddr : kproc->kp_pid, &preExisting, DragonFlyBSDProcess_new);
DragonFlyBSDProcess* dfp = (DragonFlyBSDProcess*) proc;
if (!preExisting) {
dfp->jid = kproc->kp_jailid;
if (kproc->kp_ktaddr && kproc->kp_flags & P_SYSTEM) {
// dfb kernel threads all have the same pid, so we misuse the kernel thread address to give them a unique identifier
proc->pid = (pid_t)kproc->kp_ktaddr;
proc->isKernelThread = true;
} else {
proc->pid = kproc->kp_pid; // process ID
proc->isKernelThread = false;
}
proc->isUserlandThread = kproc->kp_nthreads > 1;
proc->ppid = kproc->kp_ppid; // parent process id
proc->tpgid = kproc->kp_tpgid; // tty process group id
//proc->tgid = kproc->kp_lwp.kl_tid; // thread group id
proc->tgid = kproc->kp_pid; // thread group id
proc->pgrp = kproc->kp_pgid; // process group id
proc->session = kproc->kp_sid;
proc->st_uid = kproc->kp_uid; // user ID
proc->processor = kproc->kp_lwp.kl_origcpu;
proc->starttime_ctime = kproc->kp_start.tv_sec;
Process_fillStarttimeBuffer(proc);
proc->user = UsersTable_getRef(super->usersTable, proc->st_uid);
proc->tty_nr = kproc->kp_tdev; // control terminal device number
const char* name = (kproc->kp_tdev != NODEV) ? devname(kproc->kp_tdev, S_IFCHR) : NULL;
if (!name) {
free(proc->tty_name);
proc->tty_name = NULL;
} else {
free_and_xStrdup(&proc->tty_name, name);
}
DragonFlyBSDProcessList_updateExe(kproc, proc);
DragonFlyBSDProcessList_updateProcessName(dfpl->kd, kproc, proc);
if (settings->flags & PROCESS_FLAG_CWD) {
DragonFlyBSDProcessList_updateCwd(kproc, proc);
}
ProcessList_add(super, proc);
dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid);
} else {
proc->processor = kproc->kp_lwp.kl_cpuid;
if (dfp->jid != kproc->kp_jailid) { // process can enter jail anytime
dfp->jid = kproc->kp_jailid;
free(dfp->jname);
dfp->jname = DragonFlyBSDProcessList_readJailName(dfpl, kproc->kp_jailid);
}
// if there are reapers in the system, process can get reparented anytime
proc->ppid = kproc->kp_ppid;
if (proc->st_uid != kproc->kp_uid) { // some processes change users (eg. to lower privs)
proc->st_uid = kproc->kp_uid;
proc->user = UsersTable_getRef(super->usersTable, proc->st_uid);
}
if (settings->updateProcessNames) {
DragonFlyBSDProcessList_updateProcessName(dfpl->kd, kproc, proc);
}
}
proc->m_virt = kproc->kp_vm_map_size / ONE_K;
proc->m_resident = kproc->kp_vm_rssize * pageSizeKb;
proc->nlwp = kproc->kp_nthreads; // number of lwp thread
proc->time = (kproc->kp_swtime + 5000) / 10000;
proc->percent_cpu = 100.0 * ((double)kproc->kp_lwp.kl_pctcpu / (double)kernelFScale);
proc->percent_mem = 100.0 * proc->m_resident / (double)(super->totalMem);
if (proc->percent_cpu > 0.1) {
// system idle process should own all CPU time left regardless of CPU count
if (String_eq("idle", kproc->kp_comm)) {
isIdleProcess = true;
}
}
if (kproc->kp_lwp.kl_pid != -1)
proc->priority = kproc->kp_lwp.kl_prio;
else
proc->priority = -kproc->kp_lwp.kl_tdprio;
switch(kproc->kp_lwp.kl_rtprio.type) {
case RTP_PRIO_REALTIME:
proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX + kproc->kp_lwp.kl_rtprio.prio;
break;
case RTP_PRIO_IDLE:
proc->nice = PRIO_MAX + 1 + kproc->kp_lwp.kl_rtprio.prio;
break;
case RTP_PRIO_THREAD:
proc->nice = PRIO_MIN - 1 - RTP_PRIO_MAX - kproc->kp_lwp.kl_rtprio.prio;
break;
default:
proc->nice = kproc->kp_nice;
break;
}
// would be nice if we could store multiple states in proc->state (as enum) and have writeField render them
switch (kproc->kp_stat) {
case SIDL: proc->state = 'I'; isIdleProcess = true; break;
case SACTIVE:
switch (kproc->kp_lwp.kl_stat) {
case LSSLEEP:
if (kproc->kp_lwp.kl_flags & LWP_SINTR) // interruptible wait short/long
if (kproc->kp_lwp.kl_slptime >= MAXSLP) {
proc->state = 'I';
isIdleProcess = true;
} else {
proc->state = 'S';
}
else if (kproc->kp_lwp.kl_tdflags & TDF_SINTR) // interruptible lwkt wait
proc->state = 'S';
else if (kproc->kp_paddr) // uninterruptible wait
proc->state = 'D';
else // uninterruptible lwkt wait
proc->state = 'B';
break;
case LSRUN:
if (kproc->kp_lwp.kl_stat == LSRUN) {
if (!(kproc->kp_lwp.kl_tdflags & (TDF_RUNNING | TDF_RUNQ)))
proc->state = 'Q';
else
proc->state = 'R';
}
break;
case LSSTOP:
proc->state = 'T';
break;
default:
proc->state = 'A';
break;
}
break;
case SSTOP: proc->state = 'T'; break;
case SZOMB: proc->state = 'Z'; break;
case SCORE: proc->state = 'C'; break;
default: proc->state = '?';
}
if (kproc->kp_flags & P_SWAPPEDOUT)
proc->state = 'W';
if (kproc->kp_flags & P_TRACED)
proc->state = 'T';
if (kproc->kp_flags & P_JAILED)
proc->state = 'J';
if (Process_isKernelThread(proc))
super->kernelThreads++;
super->totalTasks++;
if (proc->state == 'R')
super->runningTasks++;
proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc)));
proc->updated = true;
}
}
bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) {
assert(id < super->existingCPUs);
// TODO: support offline CPUs and hot swapping
(void) super; (void) id;
return true;
}