htop/ProcessList.c

590 lines
20 KiB
C

/*
htop - ProcessList.c
(C) 2004,2005 Hisham H. Muhammad
Released under the GNU GPLv2, see the COPYING file
in the source distribution for its full text.
*/
#include "ProcessList.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "Compat.h"
#include "CRT.h"
#include "Hashtable.h"
#include "Macros.h"
#include "Vector.h"
#include "XUtils.h"
ProcessList* ProcessList_init(ProcessList* this, const ObjectClass* klass, UsersTable* usersTable, Hashtable* pidMatchList, uid_t userId) {
this->processes = Vector_new(klass, true, DEFAULT_SIZE);
this->processes2 = Vector_new(klass, true, DEFAULT_SIZE); // tree-view auxiliary buffer
this->processTable = Hashtable_new(200, false);
this->displayTreeSet = Hashtable_new(200, false);
this->draftingTreeSet = Hashtable_new(200, false);
this->usersTable = usersTable;
this->pidMatchList = pidMatchList;
this->userId = userId;
// set later by platform-specific code
this->cpuCount = 0;
this->scanTs = 0;
#ifdef HAVE_LIBHWLOC
this->topologyOk = false;
if (hwloc_topology_init(&this->topology) == 0) {
this->topologyOk =
#if HWLOC_API_VERSION < 0x00020000
/* try to ignore the top-level machine object type */
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_MACHINE) &&
/* ignore caches, which don't add structure */
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_CORE) &&
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_CACHE) &&
0 == hwloc_topology_set_flags(this->topology, HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM) &&
#else
0 == hwloc_topology_set_all_types_filter(this->topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) &&
#endif
0 == hwloc_topology_load(this->topology);
}
#endif
this->following = -1;
return this;
}
void ProcessList_done(ProcessList* this) {
#ifdef HAVE_LIBHWLOC
if (this->topologyOk) {
hwloc_topology_destroy(this->topology);
}
#endif
Hashtable_delete(this->draftingTreeSet);
Hashtable_delete(this->displayTreeSet);
Hashtable_delete(this->processTable);
Vector_delete(this->processes2);
Vector_delete(this->processes);
}
void ProcessList_setPanel(ProcessList* this, Panel* panel) {
this->panel = panel;
}
void ProcessList_printHeader(ProcessList* this, RichString* header) {
RichString_prune(header);
const Settings* settings = this->settings;
const ProcessField* fields = settings->fields;
ProcessField key = Settings_getActiveSortKey(settings);
for (int i = 0; fields[i]; i++) {
const char* field = Process_fields[fields[i]].title;
if (!field) {
field = "- ";
}
int color;
if (settings->treeView && settings->treeViewAlwaysByPID) {
color = CRT_colors[PANEL_HEADER_FOCUS];
} else if (key == fields[i]) {
color = CRT_colors[PANEL_SELECTION_FOCUS];
} else {
color = CRT_colors[PANEL_HEADER_FOCUS];
}
RichString_appendWide(header, color, field);
if (COMM == fields[i] && settings->showMergedCommand) {
RichString_appendAscii(header, color, "(merged)");
}
}
}
void ProcessList_add(ProcessList* this, Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) == -1);
assert(Hashtable_get(this->processTable, p->pid) == NULL);
p->processList = this;
// highlighting processes found in first scan by first scan marked "far in the past"
p->seenTs = this->scanTs;
Vector_add(this->processes, p);
Hashtable_put(this->processTable, p->pid, p);
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
}
void ProcessList_remove(ProcessList* this, Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
Process* pp = Hashtable_remove(this->processTable, p->pid);
assert(pp == p); (void)pp;
unsigned int pid = p->pid;
int idx = Vector_indexOf(this->processes, p, Process_pidCompare);
assert(idx != -1);
if (idx >= 0) {
Vector_remove(this->processes, idx);
}
assert(Hashtable_get(this->processTable, pid) == NULL); (void)pid;
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
}
Process* ProcessList_get(ProcessList* this, int idx) {
return (Process*)Vector_get(this->processes, idx);
}
int ProcessList_size(ProcessList* this) {
return Vector_size(this->processes);
}
// ProcessList_updateTreeSetLayer sorts this->displayTreeSet,
// relying only on itself.
//
// Algorithm
//
// The algorithm is based on `depth-first search`,
// even though `breadth-first search` approach may be more efficient on first glance,
// after comparison it may be not, as it's not safe to go deeper without first updating the tree structure.
// If it would be safe that approach would likely bring an advantage in performance.
//
// Each call of the function looks for a 'layer'. A 'layer' is a list of processes with the same depth.
// First it sorts a list. Then it runs the function recursively for each element of the sorted list.
// After that it updates the settings of processes.
//
// It relies on `leftBound` and `rightBound` as an optimization to cut the list size at the time it builds a 'layer'.
//
// It uses a temporary Hashtable `draftingTreeSet` because it's not safe to traverse a tree
// and at the same time make changes in it.
//
static void ProcessList_updateTreeSetLayer(ProcessList* this, unsigned int leftBound, unsigned int rightBound, unsigned int deep, unsigned int left, unsigned int right, unsigned int* index, unsigned int* treeIndex, int indent) {
// It's guaranteed that layer_size is enough space
// but most likely it needs less. Specifically on first iteration.
int layerSize = (right - left) / 2;
// check if we reach `children` of `leaves`
if (layerSize == 0)
return;
Vector* layer = Vector_new(this->processes->type, false, layerSize);
// Find all processes on the same layer (process with the same `deep` value
// and included in a range from `leftBound` to `rightBound`).
//
// This loop also keeps track of left_bound and right_bound of these processes
// in order not to lose this information once the list is sorted.
//
// The variables left_bound and right_bound are different from what the values lhs and rhs represent.
// While left_bound and right_bound define a range of processes to look at, the values given by lhs and rhs are indices into an array
//
// In the below example note how filtering a range of indices i is different from filtering for processes in the bounds left_bound < x < right_bound …
//
// The nested tree set is sorted by left value, which is guaranteed upon entry/exit of this function.
//
// i | l | r
// 1 | 1 | 9
// 2 | 2 | 8
// 3 | 4 | 5
// 4 | 6 | 7
for (unsigned int i = leftBound; i < rightBound; i++) {
Process* proc = (Process*)Hashtable_get(this->displayTreeSet, i);
assert(proc);
if (proc && proc->tree_depth == deep && proc->tree_left > left && proc->tree_right < right) {
if (Vector_size(layer) > 0) {
Process* previous_process = (Process*)Vector_get(layer, Vector_size(layer) - 1);
// Make a 'right_bound' of previous_process in a layer the current process's index.
//
// Use 'tree_depth' as a temporal variable.
// It's safe to do as later 'tree_depth' will be renovated.
previous_process->tree_depth = proc->tree_index;
}
Vector_add(layer, proc);
}
}
// The loop above changes just up to process-1.
// So the last process of the layer isn't updated by the above code.
//
// Thus, if present, set the `rightBound` to the last process on the layer
if (Vector_size(layer) > 0) {
Process* previous_process = (Process*)Vector_get(layer, Vector_size(layer) - 1);
previous_process->tree_depth = rightBound;
}
Vector_quickSort(layer);
int size = Vector_size(layer);
for (int i = 0; i < size; i++) {
Process* proc = (Process*)Vector_get(layer, i);
unsigned int idx = (*index)++;
int newLeft = (*treeIndex)++;
int level = deep == 0 ? 0 : (int)deep - 1;
int currentIndent = indent == -1 ? 0 : indent | (1 << level);
int nextIndent = indent == -1 ? 0 : ((i < size - 1) ? currentIndent : indent);
unsigned int newLeftBound = proc->tree_index;
unsigned int newRightBound = proc->tree_depth;
ProcessList_updateTreeSetLayer(this, newLeftBound, newRightBound, deep + 1, proc->tree_left, proc->tree_right, index, treeIndex, nextIndent);
int newRight = (*treeIndex)++;
proc->tree_left = newLeft;
proc->tree_right = newRight;
proc->tree_index = idx;
proc->tree_depth = deep;
if (indent == -1) {
proc->indent = 0;
} else if (i == size - 1) {
proc->indent = -currentIndent;
} else {
proc->indent = currentIndent;
}
Hashtable_put(this->draftingTreeSet, proc->tree_index, proc);
// It's not strictly necessary to do this, but doing so anyways
// allows for checking the correctness of the inner workings.
Hashtable_remove(this->displayTreeSet, newLeftBound);
}
Vector_delete(layer);
}
static void ProcessList_updateTreeSet(ProcessList* this) {
unsigned int index = 0;
unsigned int tree_index = 1;
const int vsize = Vector_size(this->processes);
assert(Hashtable_count(this->draftingTreeSet) == 0);
assert((int)Hashtable_count(this->displayTreeSet) == vsize);
ProcessList_updateTreeSetLayer(this, 0, vsize, 0, 0, vsize * 2 + 1, &index, &tree_index, -1);
Hashtable* tmp = this->draftingTreeSet;
this->draftingTreeSet = this->displayTreeSet;
this->displayTreeSet = tmp;
assert(Hashtable_count(this->draftingTreeSet) == 0);
assert((int)Hashtable_count(this->displayTreeSet) == vsize);
}
static void ProcessList_buildTreeBranch(ProcessList* this, pid_t pid, int level, int indent, int direction, bool show, int* node_counter, int* node_index) {
Vector* children = Vector_new(Class(Process), false, DEFAULT_SIZE);
for (int i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* process = (Process*)Vector_get(this->processes, i);
if (process->show && Process_isChildOf(process, pid)) {
process = (Process*)Vector_take(this->processes, i);
Vector_add(children, process);
}
}
int size = Vector_size(children);
for (int i = 0; i < size; i++) {
int index = (*node_index)++;
Process* process = (Process*)Vector_get(children, i);
int lft = (*node_counter)++;
if (!show) {
process->show = false;
}
int s = Vector_size(this->processes2);
if (direction == 1) {
Vector_add(this->processes2, process);
} else {
Vector_insert(this->processes2, 0, process);
}
assert(Vector_size(this->processes2) == s + 1); (void)s;
int nextIndent = indent | (1 << level);
ProcessList_buildTreeBranch(this, process->pid, level + 1, (i < size - 1) ? nextIndent : indent, direction, show ? process->showChildren : false, node_counter, node_index);
if (i == size - 1) {
process->indent = -nextIndent;
} else {
process->indent = nextIndent;
}
int rht = (*node_counter)++;
process->tree_left = lft;
process->tree_right = rht;
process->tree_depth = level + 1;
process->tree_index = index;
Hashtable_put(this->displayTreeSet, index, process);
}
Vector_delete(children);
}
static long ProcessList_treeProcessCompare(const void* v1, const void* v2) {
const Process *p1 = (const Process*)v1;
const Process *p2 = (const Process*)v2;
return SPACESHIP_NUMBER(p1->tree_left, p2->tree_left);
}
static long ProcessList_treeProcessCompareByPID(const void* v1, const void* v2) {
const Process *p1 = (const Process*)v1;
const Process *p2 = (const Process*)v2;
return SPACESHIP_NUMBER(p1->pid, p2->pid);
}
// Builds a sorted tree from scratch, without relying on previously gathered information
static void ProcessList_buildTree(ProcessList* this) {
int node_counter = 1;
int node_index = 0;
int direction = Settings_getActiveDirection(this->settings);
// Sort by PID
Vector_quickSortCustomCompare(this->processes, ProcessList_treeProcessCompareByPID);
int vsize = Vector_size(this->processes);
// Find all processes whose parent is not visible
int size;
while ((size = Vector_size(this->processes))) {
int i;
for (i = 0; i < size; i++) {
Process* process = (Process*)Vector_get(this->processes, i);
// Immediately consume processes hidden from view
if (!process->show) {
process = (Process*)Vector_take(this->processes, i);
process->indent = 0;
process->tree_depth = 0;
process->tree_left = node_counter++;
process->tree_index = node_index++;
Vector_add(this->processes2, process);
ProcessList_buildTreeBranch(this, process->pid, 0, 0, direction, false, &node_counter, &node_index);
process->tree_right = node_counter++;
Hashtable_put(this->displayTreeSet, process->tree_index, process);
break;
}
pid_t ppid = Process_getParentPid(process);
// Bisect the process vector to find parent
int l = 0;
int r = size;
// If PID corresponds with PPID (e.g. "kernel_task" (PID:0, PPID:0)
// on Mac OS X 10.11.6) cancel bisecting and regard this process as
// root.
if (process->pid == ppid)
r = 0;
// On Linux both the init process (pid 1) and the root UMH kernel thread (pid 2)
// use a ppid of 0. As that PID can't exist, we can skip searching for it.
if (!ppid)
r = 0;
while (l < r) {
int c = (l + r) / 2;
pid_t pid = ((Process*)Vector_get(this->processes, c))->pid;
if (ppid == pid) {
break;
} else if (ppid < pid) {
r = c;
} else {
l = c + 1;
}
}
// If parent not found, then construct the tree with this node as root
if (l >= r) {
process = (Process*)Vector_take(this->processes, i);
process->indent = 0;
process->tree_depth = 0;
process->tree_left = node_counter++;
process->tree_index = node_index++;
Vector_add(this->processes2, process);
Hashtable_put(this->displayTreeSet, process->tree_index, process);
ProcessList_buildTreeBranch(this, process->pid, 0, 0, direction, process->showChildren, &node_counter, &node_index);
process->tree_right = node_counter++;
break;
}
}
// There should be no loop in the process tree
assert(i < size);
}
// Swap listings around
Vector* t = this->processes;
this->processes = this->processes2;
this->processes2 = t;
// Check consistency of the built structures
assert(Vector_size(this->processes) == vsize); (void)vsize;
assert(Vector_size(this->processes2) == 0);
}
void ProcessList_sort(ProcessList* this) {
if (this->settings->treeView) {
ProcessList_updateTreeSet(this);
Vector_quickSortCustomCompare(this->processes, ProcessList_treeProcessCompare);
} else {
Vector_insertionSort(this->processes);
}
}
ProcessField ProcessList_keyAt(const ProcessList* this, int at) {
int x = 0;
const ProcessField* fields = this->settings->fields;
ProcessField field;
for (int i = 0; (field = fields[i]); i++) {
const char* title = Process_fields[field].title;
if (!title) {
title = "- ";
}
int len = strlen(title);
if (at >= x && at <= x + len) {
return field;
}
x += len;
}
return COMM;
}
void ProcessList_expandTree(ProcessList* this) {
int size = Vector_size(this->processes);
for (int i = 0; i < size; i++) {
Process* process = (Process*) Vector_get(this->processes, i);
process->showChildren = true;
}
}
void ProcessList_rebuildPanel(ProcessList* this) {
const char* incFilter = this->incFilter;
int currPos = Panel_getSelectedIndex(this->panel);
pid_t currPid = this->following != -1 ? this->following : 0;
int currScrollV = this->panel->scrollV;
Panel_prune(this->panel);
int size = ProcessList_size(this);
int idx = 0;
for (int i = 0; i < size; i++) {
Process* p = ProcessList_get(this, i);
if ( (!p->show)
|| (this->userId != (uid_t) -1 && (p->st_uid != this->userId))
|| (incFilter && !(String_contains_i(Process_getCommand(p), incFilter)))
|| (this->pidMatchList && !Hashtable_get(this->pidMatchList, p->tgid)) )
continue;
Panel_set(this->panel, idx, (Object*)p);
if ((this->following == -1 && idx == currPos) || (this->following != -1 && p->pid == currPid)) {
Panel_setSelected(this->panel, idx);
this->panel->scrollV = currScrollV;
}
idx++;
}
}
Process* ProcessList_getProcess(ProcessList* this, pid_t pid, bool* preExisting, Process_New constructor) {
Process* proc = (Process*) Hashtable_get(this->processTable, pid);
*preExisting = proc;
if (proc) {
assert(Vector_indexOf(this->processes, proc, Process_pidCompare) != -1);
assert(proc->pid == pid);
} else {
proc = constructor(this->settings);
assert(proc->comm == NULL);
proc->pid = pid;
}
return proc;
}
void ProcessList_scan(ProcessList* this, bool pauseProcessUpdate) {
struct timespec now;
// in pause mode only gather global data for meters (CPU/memory/...)
if (pauseProcessUpdate) {
ProcessList_goThroughEntries(this, true);
return;
}
// mark all process as "dirty"
for (int i = 0; i < Vector_size(this->processes); i++) {
Process* p = (Process*) Vector_get(this->processes, i);
p->updated = false;
p->wasShown = p->show;
p->show = true;
}
this->totalTasks = 0;
this->userlandThreads = 0;
this->kernelThreads = 0;
this->runningTasks = 0;
// set scanTs
static bool firstScanDone = false;
if (!firstScanDone) {
this->scanTs = 0;
firstScanDone = true;
} else if (Compat_clock_monotonic_gettime(&now) == 0) {
// save time in millisecond, so with a delay in deciseconds
// there are no irregularities
this->scanTs = 1000 * now.tv_sec + now.tv_nsec / 1000000;
}
ProcessList_goThroughEntries(this, false);
for (int i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* p = (Process*) Vector_get(this->processes, i);
if (p->tombTs > 0) {
// remove tombed process
if (this->scanTs >= p->tombTs) {
ProcessList_remove(this, p);
}
} else if (p->updated == false) {
// process no longer exists
if (this->settings->highlightChanges && p->wasShown) {
// mark tombed
p->tombTs = this->scanTs + 1000 * this->settings->highlightDelaySecs;
} else {
// immediately remove
ProcessList_remove(this, p);
}
} else {
p->updated = false;
}
}
if (this->settings->treeView) {
// Clear out the hashtable to avoid any left-over processes from previous build
//
// The sorting algorithm relies on the fact that
// len(this->displayTreeSet) == len(this->processes)
Hashtable_clear(this->displayTreeSet);
ProcessList_buildTree(this);
}
}