htop/ProcessList.c

660 lines
23 KiB
C
Raw Normal View History

2006-03-04 18:16:49 +00:00
/*
htop - ProcessList.c
(C) 2004,2005 Hisham H. Muhammad
Released under the GNU GPLv2, see the COPYING file
2006-03-04 18:16:49 +00:00
in the source distribution for its full text.
*/
#include "ProcessList.h"
2011-12-26 21:35:57 +00:00
#include <assert.h>
2020-11-18 11:19:42 +00:00
#include <stdlib.h>
#include <string.h>
2011-12-26 21:35:57 +00:00
#include "CRT.h"
#include "DynamicColumn.h"
2020-11-18 11:19:42 +00:00
#include "Hashtable.h"
2020-12-06 14:22:41 +00:00
#include "Macros.h"
#include "Platform.h"
2020-11-18 11:19:42 +00:00
#include "Vector.h"
2020-10-14 18:21:09 +00:00
#include "XUtils.h"
2006-03-04 18:16:49 +00:00
ProcessList* ProcessList_init(ProcessList* this, const ObjectClass* klass, UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) {
this->processes = Vector_new(klass, true, DEFAULT_SIZE);
this->processes2 = Vector_new(klass, true, DEFAULT_SIZE); // tree-view auxiliary buffer
this->processTable = Hashtable_new(200, false);
this->displayTreeSet = Hashtable_new(200, false);
this->draftingTreeSet = Hashtable_new(200, false);
2006-03-04 18:16:49 +00:00
this->usersTable = usersTable;
this->pidMatchList = pidMatchList;
Add a new DynamicMeter class for runtime Meter extension This commit is based on exploratory work by Sohaib Mohamed. The end goal is two-fold - to support addition of Meters we build via configuration files for both the PCP platform and for scripts ( https://github.com/htop-dev/htop/issues/526 ) Here, we focus on generic code and the PCP support. A new class DynamicMeter is introduced - it uses the special case 'param' field handling that previously was used only by the CPUMeter, such that every runtime-configured Meter is given a unique identifier. Unlike with the CPUMeter this is used internally only. When reading/writing to htoprc instead of CPU(N) - where N is an integer param (CPU number) - we use the string name for each meter. For example, if we have a configuration for a DynamicMeter for some Redis metrics, we might read and write "Dynamic(redis)". This identifier is subsequently matched (back) up to the configuration file so we're able to re-create arbitrary user configurations. The PCP platform configuration file format is fairly simple. We expand configs from several directories, including the users homedir alongside htoprc (below htop/meters/) and also /etc/pcp/htop/meters. The format will be described via a new pcp-htop(5) man page, but its basically ini-style and each Meter has one or more metric expressions associated, as well as specifications for labels, color and so on via a dot separated notation for individual metrics within the Meter. A few initial sample configuration files are provided below ./pcp/meters that give the general idea. The PCP "derived" metric specification - see pmRegisterDerived(3) - is used as the syntax for specifying metrics in PCP DynamicMeters.
2021-06-23 07:44:56 +00:00
this->dynamicMeters = dynamicMeters;
this->dynamicColumns = dynamicColumns;
2019-10-31 16:39:12 +00:00
this->userId = userId;
2020-11-18 11:19:42 +00:00
// set later by platform-specific code
this->activeCPUs = 0;
this->existingCPUs = 0;
this->monotonicMs = 0;
2020-10-31 01:56:16 +00:00
// always maintain valid realtime timestamps
Platform_gettime_realtime(&this->realtime, &this->realtimeMs);
#ifdef HAVE_LIBHWLOC
this->topologyOk = false;
if (hwloc_topology_init(&this->topology) == 0) {
this->topologyOk =
#if HWLOC_API_VERSION < 0x00020000
/* try to ignore the top-level machine object type */
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_MACHINE) &&
/* ignore caches, which don't add structure */
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_CORE) &&
0 == hwloc_topology_ignore_type_keep_structure(this->topology, HWLOC_OBJ_CACHE) &&
0 == hwloc_topology_set_flags(this->topology, HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM) &&
#else
0 == hwloc_topology_set_all_types_filter(this->topology, HWLOC_TYPE_FILTER_KEEP_STRUCTURE) &&
#endif
0 == hwloc_topology_load(this->topology);
}
#endif
2006-03-04 18:16:49 +00:00
this->following = -1;
2006-03-04 18:16:49 +00:00
return this;
}
void ProcessList_done(ProcessList* this) {
2016-03-01 00:57:27 +00:00
#ifdef HAVE_LIBHWLOC
if (this->topologyOk) {
hwloc_topology_destroy(this->topology);
}
#endif
2020-11-18 11:19:42 +00:00
Hashtable_delete(this->draftingTreeSet);
Hashtable_delete(this->displayTreeSet);
2006-03-04 18:16:49 +00:00
Hashtable_delete(this->processTable);
Vector_delete(this->processes2);
Vector_delete(this->processes);
2006-03-04 18:16:49 +00:00
}
void ProcessList_setPanel(ProcessList* this, Panel* panel) {
this->panel = panel;
}
static const char* alignedDynamicColumnTitle(const ProcessList* this, int key) {
const DynamicColumn* column = Hashtable_get(this->dynamicColumns, key);
if (column == NULL)
return "- ";
static char titleBuffer[DYNAMIC_MAX_COLUMN_WIDTH + /* space */ 1 + /* null terminator */ + 1];
int width = column->width;
if (!width || abs(width) > DYNAMIC_MAX_COLUMN_WIDTH)
width = DYNAMIC_DEFAULT_COLUMN_WIDTH;
xSnprintf(titleBuffer, sizeof(titleBuffer), "%*s", width, column->heading);
return titleBuffer;
}
static const char* alignedProcessFieldTitle(const ProcessList* this, ProcessField field) {
if (field >= LAST_PROCESSFIELD)
return alignedDynamicColumnTitle(this, field);
const char* title = Process_fields[field].title;
if (!title)
return "- ";
if (!Process_fields[field].pidColumn)
return title;
static char titleBuffer[PROCESS_MAX_PID_DIGITS + /* space */ 1 + /* null-terminator */ + 1];
xSnprintf(titleBuffer, sizeof(titleBuffer), "%*s ", Process_pidDigits, title);
return titleBuffer;
}
void ProcessList_printHeader(const ProcessList* this, RichString* header) {
RichString_rewind(header, RichString_size(header));
const Settings* settings = this->settings;
const ProcessField* fields = settings->fields;
ProcessField key = Settings_getActiveSortKey(settings);
2006-03-04 18:16:49 +00:00
for (int i = 0; fields[i]; i++) {
int color;
if (settings->treeView && settings->treeViewAlwaysByPID) {
color = CRT_colors[PANEL_HEADER_FOCUS];
} else if (key == fields[i]) {
color = CRT_colors[PANEL_SELECTION_FOCUS];
} else {
color = CRT_colors[PANEL_HEADER_FOCUS];
}
RichString_appendWide(header, color, alignedProcessFieldTitle(this, fields[i]));
if (key == fields[i] && RichString_getCharVal(*header, RichString_size(header) - 1) == ' ') {
RichString_rewind(header, 1); // rewind to override space
RichString_appendnWide(header,
CRT_colors[PANEL_SELECTION_FOCUS],
CRT_treeStr[Settings_getActiveDirection(this->settings) == 1 ? TREE_STR_ASC : TREE_STR_DESC],
1);
}
if (COMM == fields[i] && settings->showMergedCommand) {
RichString_appendAscii(header, color, "(merged)");
2020-11-01 00:09:51 +00:00
}
2006-03-04 18:16:49 +00:00
}
}
void ProcessList_add(ProcessList* this, Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) == -1);
assert(Hashtable_get(this->processTable, p->pid) == NULL);
2020-10-31 01:56:16 +00:00
p->processList = this;
// highlighting processes found in first scan by first scan marked "far in the past"
p->seenStampMs = this->monotonicMs;
2019-10-31 16:39:12 +00:00
Vector_add(this->processes, p);
2006-03-04 18:16:49 +00:00
Hashtable_put(this->processTable, p->pid, p);
2019-10-31 16:39:12 +00:00
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
2006-03-04 18:16:49 +00:00
}
void ProcessList_remove(ProcessList* this, const Process* p) {
assert(Vector_indexOf(this->processes, p, Process_pidCompare) != -1);
assert(Hashtable_get(this->processTable, p->pid) != NULL);
2020-11-01 00:09:51 +00:00
const Process* pp = Hashtable_remove(this->processTable, p->pid);
2006-11-08 21:49:52 +00:00
assert(pp == p); (void)pp;
2020-11-01 00:09:51 +00:00
pid_t pid = p->pid;
2010-02-25 01:37:31 +00:00
int idx = Vector_indexOf(this->processes, p, Process_pidCompare);
assert(idx != -1);
2020-11-01 00:09:51 +00:00
if (idx >= 0) {
Vector_remove(this->processes, idx);
}
if (this->following != -1 && this->following == pid) {
this->following = -1;
Panel_setSelectionColor(this->panel, PANEL_SELECTION_FOCUS);
}
assert(Hashtable_get(this->processTable, pid) == NULL);
assert(Hashtable_count(this->processTable) == Vector_count(this->processes));
2006-03-04 18:16:49 +00:00
}
2020-11-18 11:19:42 +00:00
// ProcessList_updateTreeSetLayer sorts this->displayTreeSet,
// relying only on itself.
//
// Algorithm
//
// The algorithm is based on `depth-first search`,
// even though `breadth-first search` approach may be more efficient on first glance,
2020-12-18 20:14:12 +00:00
// after comparison it may be not, as it's not safe to go deeper without first updating the tree structure.
2020-12-02 07:08:35 +00:00
// If it would be safe that approach would likely bring an advantage in performance.
2020-11-18 11:19:42 +00:00
//
// Each call of the function looks for a 'layer'. A 'layer' is a list of processes with the same depth.
// First it sorts a list. Then it runs the function recursively for each element of the sorted list.
// After that it updates the settings of processes.
//
// It relies on `leftBound` and `rightBound` as an optimization to cut the list size at the time it builds a 'layer'.
//
2020-12-02 07:08:35 +00:00
// It uses a temporary Hashtable `draftingTreeSet` because it's not safe to traverse a tree
2020-11-18 11:19:42 +00:00
// and at the same time make changes in it.
2020-12-02 07:08:35 +00:00
//
2020-11-18 11:19:42 +00:00
static void ProcessList_updateTreeSetLayer(ProcessList* this, unsigned int leftBound, unsigned int rightBound, unsigned int deep, unsigned int left, unsigned int right, unsigned int* index, unsigned int* treeIndex, int indent) {
2020-12-02 07:08:35 +00:00
// It's guaranteed that layer_size is enough space
2020-11-18 11:19:42 +00:00
// but most likely it needs less. Specifically on first iteration.
int layerSize = (right - left) / 2;
2020-12-02 07:08:35 +00:00
// check if we reach `children` of `leaves`
2020-11-18 11:19:42 +00:00
if (layerSize == 0)
return;
Vector* layer = Vector_new(Vector_type(this->processes), false, layerSize);
2020-11-18 11:19:42 +00:00
// Find all processes on the same layer (process with the same `deep` value
2020-12-02 07:08:35 +00:00
// and included in a range from `leftBound` to `rightBound`).
2020-11-18 11:19:42 +00:00
//
// This loop also keeps track of left_bound and right_bound of these processes
// in order not to lose this information once the list is sorted.
//
2020-12-02 07:08:35 +00:00
// The variables left_bound and right_bound are different from what the values lhs and rhs represent.
2020-11-18 11:19:42 +00:00
// While left_bound and right_bound define a range of processes to look at, the values given by lhs and rhs are indices into an array
//
// In the below example note how filtering a range of indices i is different from filtering for processes in the bounds left_bound < x < right_bound …
//
// The nested tree set is sorted by left value, which is guaranteed upon entry/exit of this function.
//
// i | l | r
// 1 | 1 | 9
// 2 | 2 | 8
// 3 | 4 | 5
// 4 | 6 | 7
for (unsigned int i = leftBound; i < rightBound; i++) {
Process* proc = (Process*)Hashtable_get(this->displayTreeSet, i);
assert(proc);
if (proc && proc->tree_depth == deep && proc->tree_left > left && proc->tree_right < right) {
2020-11-18 11:19:42 +00:00
if (Vector_size(layer) > 0) {
Process* previous_process = (Process*)Vector_get(layer, Vector_size(layer) - 1);
// Make a 'right_bound' of previous_process in a layer the current process's index.
2020-11-18 11:19:42 +00:00
//
// Use 'tree_depth' as a temporal variable.
2020-12-02 07:08:35 +00:00
// It's safe to do as later 'tree_depth' will be renovated.
2020-11-18 11:19:42 +00:00
previous_process->tree_depth = proc->tree_index;
}
2020-11-18 11:19:42 +00:00
Vector_add(layer, proc);
}
}
2020-12-02 07:08:35 +00:00
// The loop above changes just up to process-1.
// So the last process of the layer isn't updated by the above code.
2020-11-18 11:19:42 +00:00
//
// Thus, if present, set the `rightBound` to the last process on the layer
if (Vector_size(layer) > 0) {
Process* previous_process = (Process*)Vector_get(layer, Vector_size(layer) - 1);
2020-11-18 11:19:42 +00:00
previous_process->tree_depth = rightBound;
}
Vector_quickSort(layer);
int size = Vector_size(layer);
for (int i = 0; i < size; i++) {
Process* proc = (Process*)Vector_get(layer, i);
unsigned int idx = (*index)++;
int newLeft = (*treeIndex)++;
int level = deep == 0 ? 0 : (int)deep - 1;
2020-11-18 11:19:42 +00:00
int currentIndent = indent == -1 ? 0 : indent | (1 << level);
int nextIndent = indent == -1 ? 0 : ((i < size - 1) ? currentIndent : indent);
2020-11-18 11:19:42 +00:00
unsigned int newLeftBound = proc->tree_index;
unsigned int newRightBound = proc->tree_depth;
ProcessList_updateTreeSetLayer(this, newLeftBound, newRightBound, deep + 1, proc->tree_left, proc->tree_right, index, treeIndex, nextIndent);
2020-11-18 11:19:42 +00:00
int newRight = (*treeIndex)++;
proc->tree_left = newLeft;
proc->tree_right = newRight;
proc->tree_index = idx;
proc->tree_depth = deep;
if (indent == -1) {
proc->indent = 0;
} else if (i == size - 1) {
proc->indent = -currentIndent;
} else {
proc->indent = currentIndent;
}
Hashtable_put(this->draftingTreeSet, proc->tree_index, proc);
// It's not strictly necessary to do this, but doing so anyways
// allows for checking the correctness of the inner workings.
Hashtable_remove(this->displayTreeSet, newLeftBound);
2020-11-18 11:19:42 +00:00
}
Vector_delete(layer);
}
static void ProcessList_updateTreeSet(ProcessList* this) {
unsigned int index = 0;
unsigned int tree_index = 1;
const int vsize = Vector_size(this->processes);
2020-11-18 11:19:42 +00:00
assert(Hashtable_count(this->draftingTreeSet) == 0);
assert((int)Hashtable_count(this->displayTreeSet) == vsize);
ProcessList_updateTreeSetLayer(this, 0, vsize, 0, 0, vsize * 2 + 1, &index, &tree_index, -1);
Hashtable* tmp = this->draftingTreeSet;
this->draftingTreeSet = this->displayTreeSet;
this->displayTreeSet = tmp;
assert(Hashtable_count(this->draftingTreeSet) == 0);
assert((int)Hashtable_count(this->displayTreeSet) == vsize);
2020-11-18 11:19:42 +00:00
}
static void ProcessList_buildTreeBranch(ProcessList* this, pid_t pid, int level, int indent, int direction, bool show, int* node_counter, int* node_index) {
// On OpenBSD the kernel thread 'swapper' has pid 0.
// Do not treat it as root of any tree.
if (pid == 0)
return;
Vector* children = Vector_new(Class(Process), false, DEFAULT_SIZE);
2006-03-04 18:16:49 +00:00
for (int i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* process = (Process*)Vector_get(this->processes, i);
if (process->show && Process_isChildOf(process, pid)) {
process = (Process*)Vector_take(this->processes, i);
Vector_add(children, process);
2006-03-04 18:16:49 +00:00
}
}
2020-11-18 11:19:42 +00:00
int size = Vector_size(children);
2006-03-04 18:16:49 +00:00
for (int i = 0; i < size; i++) {
2020-11-18 11:19:42 +00:00
int index = (*node_index)++;
Process* process = (Process*)Vector_get(children, i);
2020-11-18 11:19:42 +00:00
int lft = (*node_counter)++;
2020-11-01 00:09:51 +00:00
if (!show) {
process->show = false;
2020-11-01 00:09:51 +00:00
}
int s = Vector_size(this->processes2);
2020-11-01 00:09:51 +00:00
if (direction == 1) {
Vector_add(this->processes2, process);
2020-11-01 00:09:51 +00:00
} else {
Vector_insert(this->processes2, 0, process);
2020-11-01 00:09:51 +00:00
}
assert(Vector_size(this->processes2) == s + 1); (void)s;
2020-11-01 00:09:51 +00:00
int nextIndent = indent | (1 << level);
ProcessList_buildTreeBranch(this, process->pid, level + 1, (i < size - 1) ? nextIndent : indent, direction, show ? process->showChildren : false, node_counter, node_index);
2020-11-01 00:09:51 +00:00
if (i == size - 1) {
process->indent = -nextIndent;
2020-11-01 00:09:51 +00:00
} else {
process->indent = nextIndent;
2020-11-01 00:09:51 +00:00
}
2020-11-18 11:19:42 +00:00
int rht = (*node_counter)++;
process->tree_left = lft;
process->tree_right = rht;
process->tree_depth = level + 1;
2020-11-18 11:19:42 +00:00
process->tree_index = index;
Hashtable_put(this->displayTreeSet, index, process);
2006-03-04 18:16:49 +00:00
}
Vector_delete(children);
2006-03-04 18:16:49 +00:00
}
static int ProcessList_treeProcessCompare(const void* v1, const void* v2) {
2021-07-14 17:24:18 +00:00
const Process* p1 = (const Process*)v1;
const Process* p2 = (const Process*)v2;
2020-11-18 11:19:42 +00:00
return SPACESHIP_NUMBER(p1->tree_left, p2->tree_left);
}
static int ProcessList_treeProcessCompareByPID(const void* v1, const void* v2) {
2021-07-14 17:24:18 +00:00
const Process* p1 = (const Process*)v1;
const Process* p2 = (const Process*)v2;
2020-11-18 11:19:42 +00:00
return SPACESHIP_NUMBER(p1->pid, p2->pid);
}
// Builds a sorted tree from scratch, without relying on previously gathered information
2020-11-18 11:19:42 +00:00
static void ProcessList_buildTree(ProcessList* this) {
int node_counter = 1;
int node_index = 0;
int direction = Settings_getActiveDirection(this->settings);
2020-11-18 11:19:42 +00:00
// Sort by PID
Vector_quickSortCustomCompare(this->processes, ProcessList_treeProcessCompareByPID);
int vsize = Vector_size(this->processes);
2020-11-18 11:19:42 +00:00
// Find all processes whose parent is not visible
int size;
while ((size = Vector_size(this->processes))) {
int i;
for (i = 0; i < size; i++) {
Process* process = (Process*)Vector_get(this->processes, i);
// Immediately consume processes hidden from view
2020-11-18 11:19:42 +00:00
if (!process->show) {
process = (Process*)Vector_take(this->processes, i);
2020-11-18 11:19:42 +00:00
process->indent = 0;
process->tree_depth = 0;
process->tree_left = node_counter++;
process->tree_index = node_index++;
2020-11-18 11:19:42 +00:00
Vector_add(this->processes2, process);
ProcessList_buildTreeBranch(this, process->pid, 0, 0, direction, false, &node_counter, &node_index);
process->tree_right = node_counter++;
2020-11-18 11:19:42 +00:00
Hashtable_put(this->displayTreeSet, process->tree_index, process);
break;
}
2020-11-18 11:19:42 +00:00
pid_t ppid = Process_getParentPid(process);
2020-11-18 11:19:42 +00:00
// Bisect the process vector to find parent
int l = 0;
int r = size;
2020-11-18 11:19:42 +00:00
// If PID corresponds with PPID (e.g. "kernel_task" (PID:0, PPID:0)
// on Mac OS X 10.11.6) cancel bisecting and regard this process as
// root.
if (process->pid == ppid)
r = 0;
2020-12-01 22:34:06 +00:00
// On Linux both the init process (pid 1) and the root UMH kernel thread (pid 2)
// use a ppid of 0. As that PID can't exist, we can skip searching for it.
if (!ppid)
r = 0;
2020-11-18 11:19:42 +00:00
while (l < r) {
int c = (l + r) / 2;
pid_t pid = ((Process*)Vector_get(this->processes, c))->pid;
2020-11-18 11:19:42 +00:00
if (ppid == pid) {
break;
2020-11-18 11:19:42 +00:00
} else if (ppid < pid) {
r = c;
} else {
l = c + 1;
}
}
// If parent not found, then construct the tree with this node as root
2020-11-18 11:19:42 +00:00
if (l >= r) {
process = (Process*)Vector_take(this->processes, i);
2020-11-18 11:19:42 +00:00
process->indent = 0;
process->tree_depth = 0;
process->tree_left = node_counter++;
process->tree_index = node_index++;
2020-11-18 11:19:42 +00:00
Vector_add(this->processes2, process);
Hashtable_put(this->displayTreeSet, process->tree_index, process);
ProcessList_buildTreeBranch(this, process->pid, 0, 0, direction, process->showChildren, &node_counter, &node_index);
process->tree_right = node_counter++;
2020-11-18 11:19:42 +00:00
break;
}
}
2020-11-18 11:19:42 +00:00
// There should be no loop in the process tree
assert(i < size);
2006-03-04 18:16:49 +00:00
}
2020-11-18 11:19:42 +00:00
// Swap listings around
Vector* t = this->processes;
this->processes = this->processes2;
this->processes2 = t;
// Check consistency of the built structures
assert(Vector_size(this->processes) == vsize); (void)vsize;
assert(Vector_size(this->processes2) == 0);
2006-03-04 18:16:49 +00:00
}
2020-11-18 11:19:42 +00:00
void ProcessList_sort(ProcessList* this) {
2020-12-02 17:52:09 +00:00
if (this->settings->treeView) {
2020-11-18 11:19:42 +00:00
ProcessList_updateTreeSet(this);
Vector_quickSortCustomCompare(this->processes, ProcessList_treeProcessCompare);
2020-12-02 17:52:09 +00:00
} else {
Vector_insertionSort(this->processes);
2020-11-18 11:19:42 +00:00
}
}
2020-11-04 16:46:11 +00:00
ProcessField ProcessList_keyAt(const ProcessList* this, int at) {
int x = 0;
const ProcessField* fields = this->settings->fields;
ProcessField field;
for (int i = 0; (field = fields[i]); i++) {
int len = strlen(alignedProcessFieldTitle(this, field));
if (at >= x && at <= x + len) {
return field;
}
x += len;
}
return COMM;
}
void ProcessList_expandTree(ProcessList* this) {
int size = Vector_size(this->processes);
for (int i = 0; i < size; i++) {
Process* process = (Process*) Vector_get(this->processes, i);
process->showChildren = true;
}
}
void ProcessList_collapseAllBranches(ProcessList* this) {
int size = Vector_size(this->processes);
for (int i = 0; i < size; i++) {
Process* process = (Process*) Vector_get(this->processes, i);
// FreeBSD has pid 0 = kernel and pid 1 = init, so init has tree_depth = 1
if (process->tree_depth > 0 && process->pid > 1)
process->showChildren = false;
}
}
void ProcessList_rebuildPanel(ProcessList* this) {
const char* incFilter = this->incFilter;
const int currPos = Panel_getSelectedIndex(this->panel);
const int currScrollV = this->panel->scrollV;
const int currSize = Panel_size(this->panel);
Panel_prune(this->panel);
/* Follow main process if followed a userland thread and threads are now hidden */
const Settings* settings = this->settings;
if (this->following != -1 && settings->hideUserlandThreads) {
const Process* followedProcess = (const Process*) Hashtable_get(this->processTable, this->following);
if (followedProcess && Process_isThread(followedProcess) && Hashtable_get(this->processTable, followedProcess->tgid) != NULL) {
this->following = followedProcess->tgid;
}
}
const int processCount = Vector_size(this->processes);
int idx = 0;
bool foundFollowed = false;
for (int i = 0; i < processCount; i++) {
Process* p = (Process*) Vector_get(this->processes, i);
if ( (!p->show)
|| (this->userId != (uid_t) -1 && (p->st_uid != this->userId))
2020-10-17 10:54:45 +00:00
|| (incFilter && !(String_contains_i(Process_getCommand(p), incFilter)))
|| (this->pidMatchList && !Hashtable_get(this->pidMatchList, p->tgid)) )
continue;
Panel_set(this->panel, idx, (Object*)p);
if (this->following != -1 && p->pid == this->following) {
foundFollowed = true;
Panel_setSelected(this->panel, idx);
this->panel->scrollV = currScrollV;
}
idx++;
}
if (this->following != -1 && !foundFollowed) {
/* Reset if current followed pid not found */
this->following = -1;
Panel_setSelectionColor(this->panel, PANEL_SELECTION_FOCUS);
}
if (this->following == -1) {
/* If the last item was selected, keep the new last item selected */
if (currPos > 0 && currPos == currSize - 1)
Panel_setSelected(this->panel, Panel_size(this->panel) - 1);
else
Panel_setSelected(this->panel, currPos);
this->panel->scrollV = currScrollV;
}
}
Process* ProcessList_getProcess(ProcessList* this, pid_t pid, bool* preExisting, Process_New constructor) {
2015-03-17 02:01:48 +00:00
Process* proc = (Process*) Hashtable_get(this->processTable, pid);
*preExisting = proc != NULL;
2015-03-17 02:01:48 +00:00
if (proc) {
assert(Vector_indexOf(this->processes, proc, Process_pidCompare) != -1);
assert(proc->pid == pid);
} else {
proc = constructor(this->settings);
assert(proc->cmdline == NULL);
2015-03-17 02:01:48 +00:00
proc->pid = pid;
}
return proc;
}
void ProcessList_scan(ProcessList* this, bool pauseProcessUpdate) {
// in pause mode only gather global data for meters (CPU/memory/...)
if (pauseProcessUpdate) {
ProcessList_goThroughEntries(this, true);
return;
}
2015-03-17 02:01:48 +00:00
// mark all process as "dirty"
for (int i = 0; i < Vector_size(this->processes); i++) {
Process* p = (Process*) Vector_get(this->processes, i);
p->updated = false;
2020-11-01 00:36:53 +00:00
p->wasShown = p->show;
p->show = true;
2015-03-17 02:01:48 +00:00
}
this->totalTasks = 0;
this->userlandThreads = 0;
this->kernelThreads = 0;
this->runningTasks = 0;
2020-10-31 01:56:16 +00:00
// set scan timestamp
static bool firstScanDone = false;
if (firstScanDone) {
Platform_gettime_monotonic(&this->monotonicMs);
} else {
this->monotonicMs = 0;
firstScanDone = true;
2020-10-31 01:56:16 +00:00
}
ProcessList_goThroughEntries(this, false);
2019-10-31 16:39:12 +00:00
2015-03-17 02:01:48 +00:00
for (int i = Vector_size(this->processes) - 1; i >= 0; i--) {
Process* p = (Process*) Vector_get(this->processes, i);
2021-04-18 16:10:04 +00:00
Process_makeCommandStr(p);
if (p->tombStampMs > 0) {
2020-10-31 01:56:16 +00:00
// remove tombed process
if (this->monotonicMs >= p->tombStampMs) {
2020-11-20 16:50:30 +00:00
ProcessList_remove(this, p);
2020-10-31 01:56:16 +00:00
}
} else if (p->updated == false) {
// process no longer exists
2020-11-01 00:36:53 +00:00
if (this->settings->highlightChanges && p->wasShown) {
2020-10-31 01:56:16 +00:00
// mark tombed
p->tombStampMs = this->monotonicMs + 1000 * this->settings->highlightDelaySecs;
2020-10-31 01:56:16 +00:00
} else {
// immediately remove
ProcessList_remove(this, p);
}
2020-11-01 00:09:51 +00:00
}
2015-03-17 02:01:48 +00:00
}
2020-11-18 11:19:42 +00:00
if (this->settings->treeView) {
// Clear out the hashtable to avoid any left-over processes from previous build
//
// The sorting algorithm relies on the fact that
// len(this->displayTreeSet) == len(this->processes)
Hashtable_clear(this->displayTreeSet);
ProcessList_buildTree(this);
}
2015-03-17 02:01:48 +00:00
}